Искусственный интеллект на практике

Искусственный интеллект на практике
Бернард Марр

Мэтт Уорд


МИФ Бизнес
У искусственного интеллекта – огромные возможности. Вы поймете, что он означает для современного бизнеса и какую роль играет в преображении нашего мира. На 50 ярких примерах вы узнаете, как ИИ используют стартапы, традиционные компании и гиганты вроде Google, Facebook, Microsoft и Amazon.

На русском языке публикуется впервые.





Бернард Марр, Мэтт Уорд

Искусственный интеллект на практике

50 кейсов успешных компаний



Издано с разрешения

John Wiley & Sons Limited (a company of John Wiley & Sons, Inc.)



Все права защищены.

Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.



© 2019 Bernard Marr All Rights Reserved. Authorised translation from the English language edition published by John Wiley & Sons Limited. Responsibility for the accuracy of the translation rests solely with Mann, Ivanov and Ferber and is not the responsibility of John Wiley & Sons Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, John Wiley & Sons Limited.

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2020


* * *




Предисловие


Искусственный интеллект (ИИ) бесповоротно меняет мир. И перемены глубже, чем кажется сейчас. В будущем ИИ затронет или полностью преобразует все профессии во всех сферах.

ИИ наделяет машины способностью видеть, слышать, ощущать вкус и запах, осязать, говорить, ходить, летать и учиться. Благодаря этому компании могут найти новые способы общения с клиентами, предлагать более интеллектуальные продукты и услуги, автоматизировать процессы и добиваться небывалых успехов.

Вокруг ИИ много шумихи, но не все понимают, что это такое. Одни видят в нем угрозу цивилизации, а другие – решение всех проблем человечества, от глобального потепления до исцеления рака. Мы хотим рассказать о роли ИИ в современном бизнесе – без ажиотажа и нагнетания паники.

Мы приведем реальные примеры инновационного использования ИИ в разных сферах. Так мы надеемся развеять мифы и показать, что его возможности безграничны. Технических подробностей в книге – минимум, поэтому она будет понятна большинству читателей.

Чтобы сделать книгу информативной для профессионалов, кое-какие технические детали мы все же сохранили.

Вы узнаете, как работают с ИИ стартапы, традиционные компании и гиганты вроде Google, Facebook, Alibaba, Baidu, Microsoft, Amazon и Tencent. Мы описываем ситуацию реалистично: первопроходцы ИИ несутся вперед на всех парах, оставляя позади традиционные компании, которые изо всех сил пытаются сохранить конкурентоспособность. А стартапы тем временем ставят подножку то одним, то другим.


Мощнейшая технология человечества

ИИ – самая могущественная из современных технологий, и игнорировать ее – ошибка. Лидеры стран и компаний видят в ней колоссальные возможности и боятся остаться позади всех в гонке за ИИ.

Белый дом выпустил в США не один документ о стратегической важности ИИ. В 2016 году, при Бараке Обаме, вышел первый доклад «Подготовка к будущему с искусственным интеллектом»[1 - Preparing for the Future of Artificial Intelligence, Executive Office of the President, National Science and Technology Council, National Science and Technology Council Committee on Technology, October 2016: https://obamawhitehouse.archives.gov/sites/default/files/whitehousefiles/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf (https://obamawhitehouse.archives.gov/sites/default/files/whitehousefiles/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf)], заложивший основу американской стратегии в этом направлении. В 2018 году, уже при Дональде Трампе, после саммита по ИИ в Белом доме администрация обнародовала инициативу «Искусственный интеллект для американского народа»[2 - Artificial Intelligence for the American People, The White House: https://www.whitehouse.gov/briefings-statements/artificial-intelligence-american-people/ (https://www.whitehouse.gov/briefings-statements/artificial-intelligence-american-people/)]. Президент США заявил: «Мы стоим на пороге новой технологической революции, которая может улучшить все аспекты нашей жизни, обогатить американских трудящихся и их семьи и покорить новые высоты в науке, медицине и коммуникациях». Администрация США намерена сохранить лидерство страны в области ИИ, стимулировать его исследования и внедрение, а также обучать американцев использовать все его преимущества[3 - Summary of the 2018 White House Summit on Artificial Intelligence for American Industry, The White House Office of Science and Technology Policy 10 May 2018: https://www.whitehouse.gov/wp-content/uploads/2018/05/Summary-Report-of-White-House-AI-Summit.pdf (https://www.whitehouse.gov/wp-content/uploads/2018/05/Summary-Report-of-White-House-AI-Summit.pdf)].

Президент России Владимир Путин высказался так: «Искусственный интеллект – это будущее, и не только России, но всего человечества. […] Тот, кто станет лидером в этой сфере, будет править миром»[4 - “Whoever leads in AI will rule the world”: Putin to Russian children on Knowledge Day: https://www.rt.com/news/401731-ai-rule-worldputin/ (https://www.rt.com/news/401731-ai-rule-worldputin/)]. Самые амбициозные планы у правительства Китая – к 2030 году выйти в сфере ИИ на первое место[5 - A Next Generation Artificial Intelligence Development Plan: http://www.gov.cn/zhengce/content/2017–07/20/content_5211996.htm (http://www.gov.cn/zhengce/content/2017%E2%80%9307/20/content_5211996.htm) and Three-Year Action Plan to Promote the Development of New-Generation Artificial Intelligence Industry: http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5960820/content.html (http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5960820/content.html)]. Еврокомиссия в 2018 году опубликовала стратегию ИИ, где говорится: «Как в свое время паровые двигатели и электричество, ИИ меняет мир, общество и промышленность. Вследствие роста вычислительной мощности, доступности данных и прогресса в алгоритмах ИИ стал стратегической технологией XXI века. Серьезность ситуации невозможно переоценить. От решений в сфере ИИ зависит, в каком мире мы будем жить»[6 - Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, Artificial Intelligence for Europe, Brussels 2018: https://ec.europa.eu/digital-singlemarket/en/news/communication-artificial-intelligence-europe (https://ec.europa.eu/digital-singlemarket/en/news/communication-artificial-intelligence-europe)].

Бизнес-лидеры с этим согласны. Генеральный директор Amazon Джефф Безос уверен, что мы вступили в «золотой век» ИИ и способны решать задачи, которые прежде относились к области фантастики[7 - A.I. is in a “golden age” and solving problems that were once in the realm of sci-fi, Jeff Bezos says, CNBC: https://www.cnbc.com/2017/05/08/amazon-jeff-bezos-artificial-intelligence-ai-golden-age.html (https://www.cnbc.com/2017/05/08/amazon-jeff-bezos-artificial-intelligence-ai-golden-age.html)]. Сооснователь Google Сергей Брин уверяет: «Новый скачок в развитии ИИ – самое значительное событие в компьютерной области за всю мою жизнь»[8 - Google’s Sergey Brin warns of the threat from AI in today’s “technology renaissance”: https://www.theverge.com/2018/4/28/17295064/googleai-threat-sergey-brin-founders-letter-technology-renaissance (https://www.theverge.com/2018/4/28/17295064/googleai-threat-sergey-brin-founders-letter-technology-renaissance)]. По словам генерального директора Microsoft Сатьи Наделлы, ИИ это «определяющая технология нашего времени»[9 - Microsoft CEO Satya Nadella on the rise of A.I.: “The future we will invent is a choice we make”: https://www.cnbc.com/2018/05/24/microsoft-ceo-satya-nadella-on-the-rise-of-a-i-the-future-we-willinvent-is-a-choice-we-make.html (https://www.cnbc.com/2018/05/24/microsoft-ceo-satya-nadella-on-the-rise-of-a-i-the-future-we-willinvent-is-a-choice-we-make.html)]. Учредитель и исполнительный председатель Мирового экономического форума Клаус Шваб, как и многие другие, считает ИИ (особенно в сочетании с другими технологическими инновациями) двигателем четвертой индустриальной революции, которая ведет к изменениям во всех аспектах бизнеса и общества[10 - The Fourth Industrial Revolution: what it means, how to respond, Klaus Schwab, World Economic Forum: https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-andhow-to-respond/ (https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-andhow-to-respond/)].


Что такое ИИ и расцвет глубокого машинного обучения

ИИ – не новость и не сказка. Первые разработки в этой сфере начались еще в 1950-х. ИИ – это способность компьютерных систем или машин вести себя подобно разумным существам, учиться и самостоятельно действовать. ИИ берет данные, применяет к ним вычислительные правила (алгоритмы) и на основании расчетов принимает решение или прогнозирует результат.

Данными могут быть изображения с рукописным текстом, буквы и цифры. Алгоритм – это написанная человеком компьютерная программа с некими правилами: например, каким должен быть шрифт или интервал между словами. Программа анализирует отсканированный текст, применяет правила и прогнозирует, какие буквы, цифры и слова в нем содержатся. Так машина распознает рукописный текст. Подобный ИИ еще с 1997 года использовала почта США, чтобы автоматически считывать адреса на конвертах. Для узкой задачи этот ИИ вполне годился.

ИИ на основе правил не справляется с более сложными задачами. Не подходит он и в случаях, когда правила трудно сформулировать, а значит невозможно внести в программу. Мы говорим на родном языке, ходим, узнаем лица друзей в толпе незнакомцев – и всему этому учимся по опыту, а не по правилам.

Нейронные сети мозга тренируются распознавать лица, когда мы наблюдаем их в разных ракурсах некоторое время. Движение и речь развиваются в ходе проб и ошибок. В современном ИИ за обучение отвечают искусственные нейронные сети. Мы не программируем правила – машины создают их сами. Происходит это в процессе, аналогичном нашему познанию на опыте. Это и называется «машинное обучение».

В машинном обучении ИИ обрабатывает данные тысяч изображений, с человеческим лицом или без него. Он создает свой алгоритм либо полностью самостоятельно (машинное обучение без учителя), либо с помощью человека (машинное обучение с учителем).

Если обучающие данные обрабатываются несколькими слоями искусственных нейронных сетей, – это глубокое обучение. Именно благодаря ему произошел рывок в развитии ИИ, в том числе компьютер смог распознавать, что или кого он видит на изображении или видео (машинное зрение). А еще ИИ стал лучше понимать рукописный текст и устную речь, писать и говорить. Эта технология называется обработкой естественного языка – ее мы наблюдаем на примере чат-ботов и умных колонок Amazon Echo.

Машинное обучение успешно по двум причинам.



1. Наличие данных. Данные – это сырье для ИИ, а в нынешнем мире больших данных их производится больше, чем когда-либо. Происходит цифровизация: любая деятельность оставляет цифровой след. Вокруг нас все больше устройств, которые собирают и передают данные. Данных для обучения ИИ тоже становится больше, а их многообразие растет крайне быстро.

2. Вычислительная мощность. Прорыв в облачных вычислениях позволяет хранить практически неограниченные объемы данных – и при этом дешево. А с помощью распределенных вычислений они анализируются почти в реальном времени. Микроэлектронные технологии прогрессируют, поэтому сложные вычисления возможны на маленьких мобильных устройствах, например на смартфонах. Мы называем это граничными (или периферийными) вычислениями на устройствах интернета вещей.



Люди непрерывно учатся и совершенствуются на своем опыте. Это обучение действием. В алгоритмах машинного обучения ему соответствует обучение с подкреплением. Ребенок учится ходить, все время делая поправку на опыт: если он упал из-за того, что широко шагнул, – значит, надо сделать шаг поменьше.

ИИ, который действует по алгоритму обучения с подкреплением, выбирает оптимальное поведение точно так же: он исходит из реакции среды. С подкреплением машины, например роботы, учатся ходить, управлять автомобилем и летать. В большинстве передовых программ сочетаются методы подкрепления и глубокого обучения.

Подробнее об этом – по ссылке www.bernardmarr.com (http://www.bernardmarr.com/). Там найдутся сотни статей и видео, где объясняется и обсуждается все связанное с ИИ и машинным обучением.


ИИ для бизнеса

Есть три основные модели внедрения ИИ в бизнес, и в некоторой степени они пересекаются. Компании используют ИИ, чтобы: 1) по-новому собирать информацию о клиентах и взаимодействовать с ними; 2) предлагать более интеллектуальные продукты и услуги; 3) совершенствовать и автоматизировать бизнес-процессы.

Клиенты. С помощью ИИ компании глубже понимают своих клиентов, лучше представляют, какие продукты и услуги их заинтересуют, находят к каждому индивидуальный подход и прогнозируют рыночный спрос и тренды. В книге мы рассмотрим примеры Facebook, Stitch Fix и других компаний, которым ИИ помогает собирать информацию о клиентах.

Продукты и услуги. С ИИ компании могут предложить клиентам более интеллектуальные продукты и услуги. Клиенты хотят получить умные телефоны, умные машины и умные дома. Вы узнаете, как Apple, Samsung, Tesla и Volvo создают подобные продукты, а Spotify, Disney, Uber и другие – услуги.

Автоматизация процессов. ИИ может улучшить бизнес-процессы и помочь их автоматизировать. На примере JD.com (http://jd.com/) мы расскажем, как автономные дроны, автоматизированные центры обработки заказов и роботы-курьеры влияют на коммерческую деятельность компании. Еще мы коснемся автоматизации медицинской диагностики в Infervision и Elsevier и проверки качества пиццы в Domino’s.


Стратегическое использование ИИ в бизнесе

Когда внедряется ИИ, в компании обычно пересматриваются бизнес-модели, а иногда полностью трансформируется и весь подход к бизнесу. Важно: не получится автоматизировать и усовершенствовать с помощью ИИ бизнес-модели, которые морально устарели за время четвертой индустриальной революции.

Внедрять ИИ нужно со стратегии и данных. Также надо определить важнейшие стратегические возможности и угрозы и составить список максимально эффективных вариантов использования ИИ. Эксперименты без четких планов не сработают.


ИИ в действии

Мы рассмотрим 50 примеров того, как использовать ИИ, чтобы решить практические задачи в бизнесе. В книге – пять частей.

В первой рассказывается об опыте первопроходцев ИИ – технологических компаниях, которые ухватились за его возможности, ринулись навстречу переменам и получили завидные результаты. Многие сделали инновации в сфере ИИ частью бизнеса. Их пример показывает, чего реально можно достигнуть.

Изначально мы колебались, как распределить остальные примеры – по типу применения или по профилю компании, – и все-таки выбрали второй вариант.

Во второй части рассматривается опыт ритейла – розничной торговли, а также производителей потребительских товаров, продуктов питания и напитков. Из третьей части вы узнаете, как применяют ИИ в медиа, развлекательных и телекоммуникационных компаниях. Четвертая часть посвящена сектору услуг, в том числе финансовых, и здравоохранению. В пятой, заключительной части мы расскажем о промышленных, автомобильных, аэрокосмических компаниях и четвертой промышленной революции.

Читайте все подряд или выбирайте актуальные для вас примеры и темы. Надеемся, будет интересно!




Часть 1. Первопроходцы искусственного интеллекта





1. Alibaba. ИИ стимулирует ритейл и продажи в В2В


Международная китайская группа компаний Alibaba Group владеет крупнейшей в мире торговой сетью порталов в онлайне. В нее входят Alibaba.com, Taobao, Tmall и Ali Express. По объему продаж они оставили далеко позади Amazon и eBay вместе взятые[11 - Institutional Investor, Ali Baba vs The World: https://www.institutionalinvestor.com/article/b1505pjf8xsy75/alibaba-vs-the-world (https://www.institutionalinvestor.com/article/b1505pjf8xsy75/alibaba-vs-the-world)]. Опыт создания международного интернет-магазина компания реализовала в проектах во всех сферах бизнеса и технологий. Онлайн-продажи, обслуживание розничных торговцев, электронные платежи и облачные сервисы В2В принесли Alibaba доход более 500 млрд долларов.

В поиске товаров используются инструменты ИИ. Как крупнейший провайдер облачных вычислений, Alibaba лицензирует платформы, инструменты и облачные сервисы, помогая осваивать ИИ другим компаниям.

Alibaba использует ИИ и для общественно значимых проектов: разрабатывает «умные города». Компания планирует радикально реформировать сельскохозяйственную промышленность Китая (а возможно и других стран), чтобы обеспечить продовольствием растущее население.


Как Alibaba использует ИИ

Китайское правительство активно поддерживает внедрение ИИ в компаниях, поскольку видит в нем огромный потенциал экономического роста. Цель правительства – довести стоимость промышленности до 1 трлн долларов и к 2030 году выйти в мировые лидеры в сфере ИИ[12 - CNBC, China is determined to steal A.I. crown from US and nothing, not even a trade war, will stop it: https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html (https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html)].

Плюс у компаний есть доступ к данным огромного числа граждан, что благоприятствует развитию ИИ.

Коммерческие порталы Alibaba для отбора товаров, которые предлагаются пользователю при посещении сайта и в результатах поиска, используют ИИ высокой сложности. Он кастомизирует страницу для конкретного пользователя и показывает ему товары, которые предположительно того заинтересуют, причем учитывает ценовой диапазон.

Отслеживая действия пользователей (покупки, просмотры и уход со страницы), ИИ в реальном времени учится корректировать вид страницы, чтобы повысить вероятность покупки.

Для кастомизации страниц Alibaba применяет на Taobao форму обучения с привлечением учителя – обучение с подкреплением[13 - Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning: https://arxiv.org/abs/1805.10000 (https://arxiv.org/abs/1805.10000)].

Если алгоритмы в реальном времени учатся собирать данные пользователей в большом объеме на действиях клиентов, это долгий процесс. Для бизнеса здесь есть риски. Чтобы их снизить, создали виртуальный двойник Taobao: он симулирует поведение пользователей, объем – 100 тысяч часов реальных данных.

При таком количестве данных алгоритмы знакомятся с более широким диапазоном действий пользователей за более короткий период времени.

У Alibaba есть свой чат-бот Dian Xiaomi. Он отвечает на более чем 350 млн пользовательских запросов в день и 90 % из них понимает правильно. Перечисленные инструменты нужны ему в периоды пиковой активности клиентов – во время акций, например в День холостяков на Аlibaba[14 - SCMP, Alibaba lets AI, robots and drones do the heavy lifting on Singles’ Day: https://www.scmp.com/tech/innovation/article/2119359/alibabalets-ai-robots-and-drones-do-heavy-lifting-singles-day (https://www.scmp.com/tech/innovation/article/2119359/alibabalets-ai-robots-and-drones-do-heavy-lifting-singles-day)].


Автоматическое создание карточки товара

На сайтах Alibaba – миллионы товаров, поэтому компания автоматизировала генерацию контента, чтобы не описывать каждый пункт вручную. Шаблоны предоставляются и сторонним продавцам.

ИИ-копирайтер использует алгоритмы обработки естественного языка на нейронных сетях глубокого обучения и выдает 20 тыс. строк в секунду[15 - BBC, The world’s most prolific writer is a Chinese algorithm: http://www.bbc.com/future/story/20180829-the-worlds-most-prolificwriter-is-a-chinese-algorithm (http://www.bbc.com/future/story/20180829-the-worlds-most-prolificwriter-is-a-chinese-algorithm)].

Раньше копирайтеры, работающие в продажах, часами изучали списки ключевых слов и частоту кликов, чтобы понять, что заставит клиента кликнуть на ссылку в результатах поиска. А с появлением ИИ анализ запускается одним нажатием кнопки.

Вот что происходит: многочисленные версии рекламы прогоняются через алгоритмы, обученные на данных по пользовательскому поведению. Система определяет, какие сочетания слов чаще приводят к нажатию на ссылку, и вносит их в карточку товара.


Облачные сервисы

Как Amazon и Google, Alibaba предлагает бизнес-клиентам ИИ-услуги облачного сервиса – крупнейшего в Китае[16 - Data Center News, Alibaba gives AWS, Microsoft and Google a run for their cloud money: https://datacenternews.asia/story/alibaba-givesaws-microsoft-and-google-run-their-cloud-money/ (https://datacenternews.asia/story/alibaba-givesaws-microsoft-and-google-run-their-cloud-money/)].

В предложение входит платформа машинного обучения ИИ. Она содержит решения для компаний, которым нужны когнитивные вычисления (обработка естественного языка и компьютерное зрение), но у которых пока не хватает финансов на собственную инфраструктуру.

На конкурсе Стэнфордского университета технология обработки естественного языка Alibaba победила человека в состязании, кто лучше поймет прочитанное.

В 2018 году технология обработки языка на глубоких нейронных сетях прошла тест из 100 тыс. вопросов и победила человека со счетом 82,44: 82,3[17 - Bloomberg, Alibaba’s AI Outguns Humans in Reading Test: https://www.bloomberg.com/news/articles/2018–01–15/alibaba-s-aioutgunned-humans-in-key-stanford-reading-test (https://www.bloomberg.com/news/articles/2018%E2%80%9301%E2%80%9315/alibaba-s-aioutgunned-humans-in-key-stanford-reading-test)].


«Умные города»

Alibaba разработала специальные инструменты, чтобы автоматизировать управление транспортными потоками, освещение, сбор мусора и другие задачи в городах с сетевой инфраструктурой.

Alibaba City Brain регулирует движение на всех улицах Ханчжоу – города с населением 9,5 млн человек. По данным системы, дорожные пробки сократились на 15 %[18 - Wired, In China, Alibaba’s data-hungry AI is controlling (and watching) cities: https://www.wired.co.uk/article/alibaba-city-brain-artificialintelligence-china-kuala-lumpur (https://www.wired.co.uk/article/alibaba-city-brain-artificialintelligence-china-kuala-lumpur)]. Вскоре такую же технологию внедрят в малайзийском Куала-Лумпуре.

City Brain отслеживает дорожное движение и по собственным моделям прогнозирует места возникновения заторов. Обнаружив такое место, он изменяет режим светофоров в этой зоне, чтобы не возникали пробки.

Умными билетными автоматами в шанхайском метро тоже управляет ИИ Alibaba. Автомат выдает информацию по маршруту в ответ на запрос и идентифицирует личность пользователя с помощью технологии распознавания лиц[19 - Technology Review, Inside the Chinese lab that plans to rewire the world with AI: https://www.technologyreview.com/s/610219/insidethe-chinese-lab-that-plans-to-rewire-the-world-with-ai/ (https://www.technologyreview.com/s/610219/insidethe-chinese-lab-that-plans-to-rewire-the-world-with-ai/)].


«Умная ферма»

Alibaba разработала ИИ-систему наблюдения за скотом, сельскохозяйственными и плодовыми культурами.

Крупнейшие в мире поставщики свинины – китайские фермеры – получили доступ к технологиям, которые контролируют активность и здоровье животных и сами решают, увеличить животному порцию или заставить его больше двигаться[20 - Financial Times, Alibaba brings artificial intelligence to the barnyard: https://www.ft.com/content/320fb98a-69f4-11e8-b6eb-4acfcfb08c11 (https://www.ft.com/content/320fb98a-69f4-11e8-b6eb-4acfcfb08c11)].

Растущее население надо чем-то кормить, и система позволяет фермерам быстрее воспроизводить поголовье, улучшать здоровье скота и снизить смертность новорожденных животных. Система также поможет выращивать сельскохозяйственные культуры и разумно использовать землю.


Академия открытий, проектов, динамики и перспектив

Стратегия ИИ компании Alibaba основана на том, чтобы предоставить компаниям и частным клиентам передовые технологии машинного обучения и решения глубокого обучения через облачные сервисы.

ИИ-платформы доступны для бизнеса через облачную структуру, которая объединяет 18 международных центров данных. Там установлено оборудование для предоставляемых в качестве услуг ИИ-алгоритмов и технологий обработки данных.

В 2017 году Alibaba анонсировала, что в следующие три года инвестирует 15 млрд долларов в расширение международной сети исследований и опытного производства ИИ. Программа называется «Академия открытий, проектов, динамики и перспектив» (Academy for Discovery, Adventure, Momentum and Outlook – DAMO). Для работы в лабораториях в Пекине и Ханчжоу в Китае, в Сан-Матео и Бельвью в США, а также в Москве, Тель-Авиве и Сингапуре наймут 100 исследователей[21 - CNBC, Alibaba says it will invest more than $15 billion over three years in global research program: https://www.cnbc.com/2017/10/11/alibabasays-will-pour-15-billion-into-global-research-program.html (https://www.cnbc.com/2017/10/11/alibabasays-will-pour-15-billion-into-global-research-program.html)]. Они сосредоточатся на машинном обучении, обработке естественного языка, интернете вещей, взаимодействии человека и машины и квантовых вычислениях.


Самое главное

• Alibaba – крупнейший китайский инвестор в исследования и развитие ИИ, что дает компании фору в гонке за лидерство в этой сфере.

• Модель предоставления ИИ многочисленным частным клиентам и компаниям основана на облачном сервисе. Клиенты ничем не рискуют и экономят на создании инфраструктуры, а Alibaba получает доступ к ценным данным о поведении пользователей.

• Применяя технологии повышения продаж в решении других общественных и бизнес-задач, Alibaba расширяет область применения ИИ внутри и за пределами своего бизнеса.




2. Alphabet и Google. Как преумножить потенциал ИИ


Международная группа компаний Alphabet размещается в США. Она специализируется на интернет-сервисе, технологиях и медико-биологических исследованиях. Среди прочих сюда входят поисковик Google, медико-технологическая компания Verily, производитель беспилотников Waymo, создатель устройств для «умного дома» Nest и Deep Mind – разработчик ИИ.

В 2017 году Сергей Брин, президент Alphabet, заявил: «Новый скачок в развитии ИИ – самое значительное событие в компьютерной области за всю мою жизнь»[22 - Alphabet, 2017 Founder’s Letter: https://abc.xyz/investor/foundersletters/017/index.html (https://abc.xyz/investor/foundersletters/017/index.html)], то есть важнее создания интернета.

В Alphabet осознают потенциал ИИ и применяют его во всех сферах: в оптимизации поисковиков, в беспилотных автомобилях, «умных домах», виртуальных помощниках, языковых переводах и медицинских технологиях.


Как Alphabet использует ИИ

«Умный» поиск

Самый популярный в мире поисковик Google оснащен ИИ. Текстовые и голосовые запросы и изображения обрабатывает умная самообучающаяся система – с 2015 года, когда был запущен RankBrain[23 - Search Engine Land, FAQ: All about the Google RankBrain algorithm: https://searchengineland.com/faq-all-about-the-new-google-rankbrainalgorithm-234440 (https://searchengineland.com/faq-all-about-the-new-google-rankbrainalgorithm-234440)].

Текстовый и голосовой поиск основан на обработке естественного языка: алгоритмы оценивают слова в контексте, а не по отдельности. Это семантический анализ.

В поиске по картинкам компьютерное зрение распознает и классифицирует данные об изображении, чтобы пользователи могли найти его текстовым или голосовым поиском. Алгоритмы глубокого обучения постоянно совершенствуются в том, чтобы распознавать и классифицировать отдельные элементы изображения. Чем больше учебных картинок обрабатывает машина, тем лучше понимает, что на них представлено.

Когда ИИ Google проанализировал запрос и предположил, что вам нужно, он сразу обращается к каталогу онлайн-контента: веб-страниц, изображений, видео и документов. Они уже обработаны системой машинного обучения.

Системы учатся сортировать, ранжировать и фильтровать контент каталога. Каждая единица контента оценивается по количеству ссылок на нее, точности содержащейся в ней информации. Также ИИ проверяет, не спам ли это или реклама и не нарушает ли контент закон или авторские права.

Обычный поиск Google – это множество сложных, мгновенно выполняемых вычислений ИИ. Системы, способные ежедневно осуществлять миллиарды вычислений, вознесли Alphabet и Google на вершину и принесли невероятную прибыль.

Google использует ИИ для других целей, например чтобы обеспечить безопасность аккаунтов Gmail и сервиса контекстной рекламы, которую показывают только потенциально заинтересованным пользователям.


Персональный помощник на базе ИИ

Персональный помощник с голосовым управлением на основе ИИ появился несколько лет назад. Сегодня всем известны Google Home, Amazon Alexa и Apple Siri.

Поначалу обработка естественного языка в пользовательских устройствах впечатляла, особенно по сравнению с недавним прошлым, но обнаружились ее ограничения. ИИ хорошо понимает только элементарные и короткие предложения и команды. Попробуйте поговорить с ним, как с обычным человеком, – и он сразу запутается.

По человеческим меркам нынешний ИИ – младенец. А если говорить на языке науки, ему не хватает данных. Но он быстро растет, например благодаря технологии Google Duplex. Она поддержит и довольно неформальную беседу, потому что обучена для конкретных ситуаций, и алгоритмы собирают только касающиеся этих событий данные. Google демонстрирует прогресс Duplex на примере записи в парикмахерскую по телефону[24 - Google, Google Duplex: An AI System for Accomplishing Real-World Tasks Over the Phone: https://ai.googleblog.com/2018/05/duplex-aisystem-for-natural-conversation.html (https://ai.googleblog.com/2018/05/duplex-aisystem-for-natural-conversation.html)]. В таких узких и контролируемых случаях технология ведет себя почти по-человечески. Для этого инженеры Google запрограммировали свойственные нашей речи междометия: машина вставляет в разговор «эм-м», «ах» и «угу», когда сочтет это уместным.


Языковой перевод

Компьютер можно научить говорить на одном языке, а любой другой он освоит сам с помощью машинного обучения. По этому принципу работает переводчик Google, раскладывая язык на основные составляющие. Глубокие нейронные сети Google Translate постоянно оттачивают алгоритмы, изучая новые языки, и так совершенствуются в точности переводов. Google внедрила эту функцию в наушники Pixel Buds на базе Google Assistant, и пользователи могут слушать трансляцию перевода почти в режиме реального времени[25 - The Verge, The Pixel Buds’ translation feature is coming to all headphones With Google Assistant: https://www.theverge.com/circuitbreaker/2018/10/15/17978298/pixel-buds-google-translate-google-assistantheadphones (https://www.theverge.com/circuitbreaker/2018/10/15/17978298/pixel-buds-google-translate-google-assistantheadphones)].


Беспилотные автомобили

У Waymo – подразделения Alphabet, которое разрабатывает беспилотные автомобили, – одна из самых развитых платформ в мире. Недавно компания стала первым коммерческим перевозчиком[26 - Financial Times, Alphabet’s Waymo begins charging passengers for self-driving cars: https://www.ft.com/content/7980e98e-d8b6-11e8-a854-33d6f82e62f8 (https://www.ft.com/content/7980e98e-d8b6-11e8-a854-33d6f82e62f8)].

Alphabet пошел еще дальше: автомобили полностью автоматизированы, в них даже нет руля и педалей. Они созданы для новой урбанистической эпохи, в которую быть владельцем автомобиля – дорого и неудобно. Сервис Waymo ориентирован на частный извоз: по прогнозам компании, такой формат будет основным в умных городах будущего.


Субтитры к миллионам видеозаписей

В машинном обучении Google использует алгоритмы естественного языка, когда автоматически записываются субтитры для слабослышащих (или предпочитающих тишину) людей на сервисе потокового видео YouTube. Как и с речью, для идентификации звуков (аплодисментов, музыки) система использует глубокие нейронные сети и автоматически выводит текст: он сообщает зрителю, что происходит[27 - Google, Adding Sound Effect Information to YouTube Captions: https://ai.googleblog.com/2017/03/adding-sound-effect-information-to.html (https://ai.googleblog.com/2017/03/adding-sound-effect-information-to.html)].


Диагностика заболеваний

Технология ИИ Alphabet (в частности на базе глубокого обучения) широко применяется в медицине. Из недавних новшеств стоит упомянуть офтальмологическую диагностику. Для обучения алгоритмов используются снимки оптической когерентной томографии – инфракрасные 3D-изображения глазного яблока[28 - Nature, Clinically applicable deep learning for diagnosis and referral in retinal disease: https://www.nature.com/articles/s41591-018-0107-6 (https://www.nature.com/articles/s41591-018-0107-6)]. Система основана на двух алгоритмах глубокого обучения. Один строит подробную схему устройства глаза и определяет, что нормально, а что может быть симптомом болезни, например возрастной макулодистрофии (истончение сетчатки глаза). Второй алгоритм анализирует медицинские показатели и выдает специалистам диагноз и схему лечения.


Google Brain

Исследовательское подразделение искусственного интеллекта Google называется Google Brain. Его основали в 2011 году Джефф Дин, Грег Коррадо и Эндрю Ын из Стэнфордского университета. Они стали пионерами практических технологий ИИ.

В Google Brain предположили, что обширные сверхбыстрые сети хранилища и огромный объем данных интернета, который проходит по их серверам, пригодятся для машинного и глубокого обучения. С тех пор команда разработала ключевые технологии, такие как компьютерное зрение и обработка естественного языка, и сделала ИИ востребованным в бизнесе[29 - Google, Using large-scale brain simulations for machine learning and A.I.: https://googleblog.blogspot.com/2012/06/using-large-scale-brainsimulations-for.html (https://googleblog.blogspot.com/2012/06/using-large-scale-brainsimulations-for.html)].


Deep Mind

Deep Mind – еще один знаковый для Alphabet термин, появившийся в 2014 году. Британский стартап специализировался на симуляторах нейронных сетей мозга и обучал их играть в игры. Исследователи Deep Mind наблюдали, как мозг решает когнитивные, то есть связанные с познанием, задачи во время игры, а данные использовали для обучения машин. Технология стала сенсацией в 2016 году, когда оснащенный ей компьютер победил профессионального игрока в го[30 - Wired, Google’s AI Wins First Historic Match: https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/ (https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/)].

Сегодня на Deep Mind работают интеллектуальные программы Alphabet. Они управляют охлаждающим оборудованием дата-центров, оптимизируют расход аккумулятора мобильных устройств на Android и т. д. А еще они участвуют в офтальмологической программе, о которой речь шла выше.


Самое главное

Alphabet и Google считают ИИ отправной точкой для революции компьютерных технологий.

• Компании уверены, что влияние следующей волны на общество будет еще более значительным, чем появление интернета.

• Большой объем данных позволил Alphabet разработать первые в своем роде услуги: поиск, показы рекламы, языковой перевод, обработку речи, «умные дома» и беспилотные автомобили.

• Благодаря инфраструктуре и вычислительной мощности для обработки большого объема данных на необходимой для поисковика супервысокой скорости Google применила все эти возможности к ИИ.

• Финансовые ресурсы Google позволили воспользоваться всеми качественно новыми разработками исследовательских групп и стартапов в сфере ИИ, такими как глубокое обучение.




3. Amazon. Глубокое обучение повышает показатели бизнеса


Основателю книжного интернет-магазина Amazon Джеффу Безосу было все равно, чем торговать: он хотел подняться на буме онлайн-продаж, который предвидел. Сегодня Amazon – международная торговая площадка и ведущий мировой провайдер облачных вычислений. Компания занимает третье место по выручке и рыночной капитализации. Помимо онлайн-магазина и предоставления облачных услуг компания владеет издательским подразделением, кино- и телевизионной студией и производит бытовые товары: электронные книги Kindle, планшетные компьютеры и медиаплееры Fire и умные колонки Amazon Echo.

С начала 1990-х Amazon использовала прогностическую аналитику. И внедряла ее везде – от знаменитого рекомендательного сервиса до оптимизации маршрута роботов в центрах исполнения заказов. В начале последнего десятилетия растущий потенциал машинного обучения заставил интернет-гиганта пересмотреть все аспекты деятельности. Безосу мало было обойти Walmart и Target на рынке продаж – он претендовал на уровень Google, Facebook и Apple и первое место в технологической сфере. Значит, надо было внедрять глубокое обучение в ключевые сервисы и расширять деятельность. Так появились умные колонки Echo с виртуальным помощником Alexa и бескассовые супермаркеты.

Среди дальнейших планов – доставка заказов автоматизированными дронами и «опережающая доставка» (до заказа) товаров, которые могут понравиться клиенту.


Как Amazon использует ИИ

Amazon первой внедрила рекомендательный сервис, то есть предложение товаров на основе предыдущих покупок. Это с самого начала было основой бизнес-стратегии компании. За годы аналитические инструменты усовершенствовались, но до сих пор делят пользователей на категории по собранным о них данным, моделируют поведение и предлагают товары, популярные у покупателей из той же категории.

В начале 2014 года компания запустила крупную модернизацию существующей рекомендательной системы: начала внедрять алгоритмы глубокого обучения в прогностические инструменты[31 - Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/ (https://www.wired.com/story/amazon-artificial-intelligence-flywheel/)]. Сейчас глубокое обучение встроено в большинство функций сайта, разработанных для персонификации покупательского опыта: «эти товары часто покупают вместе», «купившие этот товар также приобрели…» и т. д.

Глубинные слои нейронных сетей учатся так же, как человеческий мозг, – на данных, которые через них проходят. Алгоритмы постоянно совершенствуются в поиске паттернов и связанных данных – в случае Amazon это данные о транзакциях и покупательском поведении. На этих алгоритмах работают рекомендательный сервис Amazon, поиск Google, лента Facebook и подбор фильмов Netflix. Как и соперники в борьбе за первое место, Amazon делает ставки на глубокое обучение – двигатель революции ИИ.

Amazon использует ИИ в центрах исполнения заказов – на складах, где люди и роботы ежедневно собирают и упаковывают миллионы посылок. С виду складские роботы ничем не примечательны – это приземистые передвижные платформы[32 - Robots, Drive Unit: https://robots.ieee.org/robots/kiva/?utm_source=spectrum (https://robots.ieee.org/robots/kiva/?utm_source%3dspectrum)]. Но благодаря алгоритмам глубокого обучения они шустро снуют по складским лабиринтам, находят на полках нужный товар и привозят сотруднику, который комплектует заказ. Робот способен действовать в условиях, неудобных для человека, поэтому Amazon расширяет складские площади и ускоряет выполнение заказов, а значит, растет и доход. В настоящее время в центрах исполнения заказов Amazon по всему миру используются сотни тысяч роботов[33 - IEEE Spectrum, Brad Porter, VP of Robotics at Amazon, on Warehouse Automation, Machine Learning, and His First Robot: https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon (https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon)].


Amazon Alexa

Уже не верится, что персональный домашний ИИ-ассистент в 2015 году казался чудом. К 2018 году он был в 16 % семей в США. Технология совершенствуется, реклама не отстает – и «электронного помощника» покупают все чаще[34 - Tech Crunch, 39 million Americans now own a smart speaker, report claims: https://techcrunch.com/2018/01/12/39-million-americans-now-own-a-smart-speaker-report-claims/ (https://techcrunch.com/2018/01/12/39-million-americans-now-own-a-smart-speaker-report-claims/)].

Шагом вперед стало понимание, что реализацию домашних ИИ-устройств ограничивает не технология – она была уже достаточно развитой для выполнения такого рода задач. Проблема состояла в интерфейсе: смартфон – удобная вещь, но не так просто устроенная, как выключатель, чайник, радио или поваренная книга.

C Echo появилось голосовое управление умными устройствами: не отрываясь от уборки, можно найти нужную информацию или включить музыку.

Ассистент интерпретирует голосовые команды с высокой точностью. Этим он обязан алгоритмам глубокого обучения[35 - Quora, How does Amazon use Deep Learning?: https://www.quora.com/How-does-Amazon-use-Deep-Learning (https://www.quora.com/How-does-Amazon-use-Deep-Learning)]. Нейронные сети реагируют на заданное пользователем «пробуждающее слово» – сигнал слушать и анализировать команду. С опытом ассистент все лучше понимает нюансы разговорной речи. Глубокие нейронные сети учатся говорить, как мы, обрабатывая голосовые данные.


Интеллектуальный «маховик» Amazon

Модель распространения ИИ во все сферы деятельности в Amazon назвали «маховиком»[36 - Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/ (https://www.wired.com/story/amazon-artificial-intelligence-flywheel/)]. Вообще, это механическое устройство, которое накапливает поступающую от генератора кинетическую энергию и регулирует степень ее высвобождения. А в случае Amazon избыточная «энергия», сгенерированная успешным внедрением ИИ в одну сферу деятельности, идет на исследования и инвестиции в другую.

Таким образом создается благоприятная среда обмена данными и технологиями между отделами и подразделениями. Лучшие практические наработки передаются из рук в руки. К примеру, повышение точности рекомендательного сервиса с помощью глубокого обучения пригодилось в распознавании речи Echo.

Другие подразделения тоже обнаружили, в чем плюсы повсеместного распространения устройств с Alexa – в частности, пользовательских приложений под названием «навыки». Так были добавлены навыки, предоставляющие пользователям голосовой доступ к Amazon Prime Video, Amazon Music Unlimited и другим сервисам. Благодаря глубокому обучению Alexa из слов пользователя делает вывод, какие из 40 тыс. навыков он счел полезными[37 - Amazon, The Scalable Neural Architecture behind Alexa’s Ability to Select Skills: https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecturebehind-alexa-s-ability-to-arbitrate-skills (https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecturebehind-alexa-s-ability-to-arbitrate-skills)].

Успешные проекты с глубоким обучением полностью себя окупают. Они не только выполняют свои задачи, но и генерируют данные, на которых будут учиться алгоритмы для решения других проблем.


Веб-сервисы Amazon

Amazon, как и ее конкуренты Google и Alibaba, продает бизнес-клиентам облачные сервисы под брендом Amazon Web Services (AWS). А недавно добавила к списку услуг машинное обучение: теперь компании берут ИИ «напрокат» – это дешевле, чем строить свою инфраструктуру.

ИИ осваивается во всех секторах бизнеса, и ключевой частью стратегии Amazon стала помощь маленьким компаниям, чтобы те тоже стали конкурентоспособными. Все по поговорке: во время золотой лихорадки больше всех заработали продавцы лопат!

AWS предоставляет доступ к базовым технологиям машинного обучения, таким как обработка естественного языка, компьютерное зрение, и инструментам для извлечения полезной информации из неструктурированных голосовых и видеоданных[38 - Amazon, Machine Learning on AWS: https://aws.amazon.com/machine-learning/ (https://aws.amazon.com/machine-learning/)].


Amazon Prime Air

В самый амбициозный проект Amazon входит парк летающих курьеров-дронов, которые должны приносить товары прямо к порогу. В 2013 году анонсировалось, что они будут доставлять посылку в течение 30 минут после заказа[39 - CBS, Amazon unveils futuristic plan: delivery by drone: https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/ (https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/)]




Конец ознакомительного фрагмента.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=51663092) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



notes


Примечания





1


Preparing for the Future of Artificial Intelligence, Executive Office of the President, National Science and Technology Council, National Science and Technology Council Committee on Technology, October 2016: https://obamawhitehouse.archives.gov/sites/default/files/whitehousefiles/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf (https://obamawhitehouse.archives.gov/sites/default/files/whitehousefiles/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf)




2


Artificial Intelligence for the American People, The White House: https://www.whitehouse.gov/briefings-statements/artificial-intelligence-american-people/ (https://www.whitehouse.gov/briefings-statements/artificial-intelligence-american-people/)




3


Summary of the 2018 White House Summit on Artificial Intelligence for American Industry, The White House Office of Science and Technology Policy 10 May 2018: https://www.whitehouse.gov/wp-content/uploads/2018/05/Summary-Report-of-White-House-AI-Summit.pdf (https://www.whitehouse.gov/wp-content/uploads/2018/05/Summary-Report-of-White-House-AI-Summit.pdf)




4


“Whoever leads in AI will rule the world”: Putin to Russian children on Knowledge Day: https://www.rt.com/news/401731-ai-rule-worldputin/ (https://www.rt.com/news/401731-ai-rule-worldputin/)




5


A Next Generation Artificial Intelligence Development Plan: http://www.gov.cn/zhengce/content/2017–07/20/content_5211996.htm (http://www.gov.cn/zhengce/content/2017%E2%80%9307/20/content_5211996.htm) and Three-Year Action Plan to Promote the Development of New-Generation Artificial Intelligence Industry: http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5960820/content.html (http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5960820/content.html)




6


Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, Artificial Intelligence for Europe, Brussels 2018: https://ec.europa.eu/digital-singlemarket/en/news/communication-artificial-intelligence-europe (https://ec.europa.eu/digital-singlemarket/en/news/communication-artificial-intelligence-europe)




7


A.I. is in a “golden age” and solving problems that were once in the realm of sci-fi, Jeff Bezos says, CNBC: https://www.cnbc.com/2017/05/08/amazon-jeff-bezos-artificial-intelligence-ai-golden-age.html (https://www.cnbc.com/2017/05/08/amazon-jeff-bezos-artificial-intelligence-ai-golden-age.html)




8


Google’s Sergey Brin warns of the threat from AI in today’s “technology renaissance”: https://www.theverge.com/2018/4/28/17295064/googleai-threat-sergey-brin-founders-letter-technology-renaissance (https://www.theverge.com/2018/4/28/17295064/googleai-threat-sergey-brin-founders-letter-technology-renaissance)




9


Microsoft CEO Satya Nadella on the rise of A.I.: “The future we will invent is a choice we make”: https://www.cnbc.com/2018/05/24/microsoft-ceo-satya-nadella-on-the-rise-of-a-i-the-future-we-willinvent-is-a-choice-we-make.html (https://www.cnbc.com/2018/05/24/microsoft-ceo-satya-nadella-on-the-rise-of-a-i-the-future-we-willinvent-is-a-choice-we-make.html)




10


The Fourth Industrial Revolution: what it means, how to respond, Klaus Schwab, World Economic Forum: https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-andhow-to-respond/ (https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-andhow-to-respond/)




11


Institutional Investor, Ali Baba vs The World: https://www.institutionalinvestor.com/article/b1505pjf8xsy75/alibaba-vs-the-world (https://www.institutionalinvestor.com/article/b1505pjf8xsy75/alibaba-vs-the-world)




12


CNBC, China is determined to steal A.I. crown from US and nothing, not even a trade war, will stop it: https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html (https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html)




13


Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning: https://arxiv.org/abs/1805.10000 (https://arxiv.org/abs/1805.10000)




14


SCMP, Alibaba lets AI, robots and drones do the heavy lifting on Singles’ Day: https://www.scmp.com/tech/innovation/article/2119359/alibabalets-ai-robots-and-drones-do-heavy-lifting-singles-day (https://www.scmp.com/tech/innovation/article/2119359/alibabalets-ai-robots-and-drones-do-heavy-lifting-singles-day)




15


BBC, The world’s most prolific writer is a Chinese algorithm: http://www.bbc.com/future/story/20180829-the-worlds-most-prolificwriter-is-a-chinese-algorithm (http://www.bbc.com/future/story/20180829-the-worlds-most-prolificwriter-is-a-chinese-algorithm)




16


Data Center News, Alibaba gives AWS, Microsoft and Google a run for their cloud money: https://datacenternews.asia/story/alibaba-givesaws-microsoft-and-google-run-their-cloud-money/ (https://datacenternews.asia/story/alibaba-givesaws-microsoft-and-google-run-their-cloud-money/)




17


Bloomberg, Alibaba’s AI Outguns Humans in Reading Test: https://www.bloomberg.com/news/articles/2018–01–15/alibaba-s-aioutgunned-humans-in-key-stanford-reading-test (https://www.bloomberg.com/news/articles/2018%E2%80%9301%E2%80%9315/alibaba-s-aioutgunned-humans-in-key-stanford-reading-test)




18


Wired, In China, Alibaba’s data-hungry AI is controlling (and watching) cities: https://www.wired.co.uk/article/alibaba-city-brain-artificialintelligence-china-kuala-lumpur (https://www.wired.co.uk/article/alibaba-city-brain-artificialintelligence-china-kuala-lumpur)




19


Technology Review, Inside the Chinese lab that plans to rewire the world with AI: https://www.technologyreview.com/s/610219/insidethe-chinese-lab-that-plans-to-rewire-the-world-with-ai/ (https://www.technologyreview.com/s/610219/insidethe-chinese-lab-that-plans-to-rewire-the-world-with-ai/)




20


Financial Times, Alibaba brings artificial intelligence to the barnyard: https://www.ft.com/content/320fb98a-69f4-11e8-b6eb-4acfcfb08c11 (https://www.ft.com/content/320fb98a-69f4-11e8-b6eb-4acfcfb08c11)




21


CNBC, Alibaba says it will invest more than $15 billion over three years in global research program: https://www.cnbc.com/2017/10/11/alibabasays-will-pour-15-billion-into-global-research-program.html (https://www.cnbc.com/2017/10/11/alibabasays-will-pour-15-billion-into-global-research-program.html)




22


Alphabet, 2017 Founder’s Letter: https://abc.xyz/investor/foundersletters/017/index.html (https://abc.xyz/investor/foundersletters/017/index.html)




23


Search Engine Land, FAQ: All about the Google RankBrain algorithm: https://searchengineland.com/faq-all-about-the-new-google-rankbrainalgorithm-234440 (https://searchengineland.com/faq-all-about-the-new-google-rankbrainalgorithm-234440)




24


Google, Google Duplex: An AI System for Accomplishing Real-World Tasks Over the Phone: https://ai.googleblog.com/2018/05/duplex-aisystem-for-natural-conversation.html (https://ai.googleblog.com/2018/05/duplex-aisystem-for-natural-conversation.html)




25


The Verge, The Pixel Buds’ translation feature is coming to all headphones With Google Assistant: https://www.theverge.com/circuitbreaker/2018/10/15/17978298/pixel-buds-google-translate-google-assistantheadphones (https://www.theverge.com/circuitbreaker/2018/10/15/17978298/pixel-buds-google-translate-google-assistantheadphones)




26


Financial Times, Alphabet’s Waymo begins charging passengers for self-driving cars: https://www.ft.com/content/7980e98e-d8b6-11e8-a854-33d6f82e62f8 (https://www.ft.com/content/7980e98e-d8b6-11e8-a854-33d6f82e62f8)




27


Google, Adding Sound Effect Information to YouTube Captions: https://ai.googleblog.com/2017/03/adding-sound-effect-information-to.html (https://ai.googleblog.com/2017/03/adding-sound-effect-information-to.html)




28


Nature, Clinically applicable deep learning for diagnosis and referral in retinal disease: https://www.nature.com/articles/s41591-018-0107-6 (https://www.nature.com/articles/s41591-018-0107-6)




29


Google, Using large-scale brain simulations for machine learning and A.I.: https://googleblog.blogspot.com/2012/06/using-large-scale-brainsimulations-for.html (https://googleblog.blogspot.com/2012/06/using-large-scale-brainsimulations-for.html)




30


Wired, Google’s AI Wins First Historic Match: https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/ (https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/)




31


Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/ (https://www.wired.com/story/amazon-artificial-intelligence-flywheel/)




32


Robots, Drive Unit: https://robots.ieee.org/robots/kiva/?utm_source=spectrum (https://robots.ieee.org/robots/kiva/?utm_source%3dspectrum)




33


IEEE Spectrum, Brad Porter, VP of Robotics at Amazon, on Warehouse Automation, Machine Learning, and His First Robot: https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon (https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon)




34


Tech Crunch, 39 million Americans now own a smart speaker, report claims: https://techcrunch.com/2018/01/12/39-million-americans-now-own-a-smart-speaker-report-claims/ (https://techcrunch.com/2018/01/12/39-million-americans-now-own-a-smart-speaker-report-claims/)




35


Quora, How does Amazon use Deep Learning?: https://www.quora.com/How-does-Amazon-use-Deep-Learning (https://www.quora.com/How-does-Amazon-use-Deep-Learning)




36


Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/ (https://www.wired.com/story/amazon-artificial-intelligence-flywheel/)




37


Amazon, The Scalable Neural Architecture behind Alexa’s Ability to Select Skills: https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecturebehind-alexa-s-ability-to-arbitrate-skills (https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecturebehind-alexa-s-ability-to-arbitrate-skills)




38


Amazon, Machine Learning on AWS: https://aws.amazon.com/machine-learning/ (https://aws.amazon.com/machine-learning/)




39


CBS, Amazon unveils futuristic plan: delivery by drone: https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/ (https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/)


Искусственный интеллект на практике Бернард Марр и Мэтт Уорд
Искусственный интеллект на практике

Бернард Марр и Мэтт Уорд

Тип: электронная книга

Жанр: Инновации в бизнесе

Язык: на русском языке

Издательство: Манн, Иванов и Фербер

Дата публикации: 26.07.2024

Отзывы: Пока нет Добавить отзыв

О книге: У искусственного интеллекта – огромные возможности. Вы поймете, что он означает для современного бизнеса и какую роль играет в преображении нашего мира. На 50 ярких примерах вы узнаете, как ИИ используют стартапы, традиционные компании и гиганты вроде Google, Facebook, Microsoft и Amazon.

  • Добавить отзыв