Aprendizaje Automático En Acción

Aprendizaje Automático En Acción
Alan T. Norman


¿Está buscando un libro fundamental para comenzar con los conceptos básicos del aprendizaje automático? Mi libro le explicará los conceptos básicos de manera que sean fáciles de entender. Una vez que haya leído este libro, tendrá una sólida comprensión de los principios básicos que facilitarán el paso a un libro más avanzado si desea obtener más información.







Aprendizaje Automático en Acción

Un Libro Para El Lego

Alan T. Norman

Traductora: Sebastian Bolivar

Consigue tus ballenas Bitcoin gratis: Tipos que engañaron al mundo con el Libro de Bonos

(Detalles al final de este libro.)

Copyright © 2017 Alan T. Norman. Todos los derechos reservados.

Ninguna parte de esta publicación puede ser reproducida, distribuida o transmitida de ninguna forma o por ningún medio, incluyendo fotocopias, grabaciones u otros métodos electrónicos o mecánicos, o por cualquier sistema de almacenamiento y recuperación de información sin el permiso previo por escrito del editor, excepto en el caso de citas muy breves incorporadas en revisiones críticas y otros usos no comerciales permitidos por la ley de derechos de autor.





Tabla de Contenido


Por Que Escribi Este Libro (#ulink_132720f2-8751-5dab-9c34-4151db8556fa)

Este Libro No Es Sobre Algoritmos De Aprendizaje De Maquinas De Codificación (#ulink_15ada232-9363-5b3e-89ea-43a2ed39756a)

Un Libro Para El Laico (#ulink_c505c3ff-2737-535a-8491-822b80b10662)

Capítulo 1. Qué es el aprendizaje automático? (#ulink_19ee1dac-44c7-5d6c-84ed-aab2dc8246f9)

Programación explícita vs. Entrenamiento de algoritmo (#ulink_b794b848-8c04-568c-aab8-2b91105f11b8)

Definiciones: inteligencia artificial vs. Aprendizaje automático vs redes neurales (#ulink_813285e8-5439-536b-986c-b62546fc7c9a)

Conceptos Básicos (#ulink_22f0fcdb-167a-5511-87c4-a03ff89b550a)

Aprendizaje Supervisado Vs No Supervisado (#litres_trial_promo)

¿Qué problemas puede resolver el aprendizaje automatico? (#litres_trial_promo)

La Caja Negra: Lo Que No Sabemos Sobre El Aprendizaje De Máquinas (#litres_trial_promo)

Cada Vez Mas Profundo (#litres_trial_promo)

Capítulo 2. Limpieza, etiquetado y curado de bases de datos (#litres_trial_promo)

Limpiando El Conjunto De Data (#litres_trial_promo)

Se Necesita Grandes Conjuntos De Data Para ML (#litres_trial_promo)

Necesita Estar Bien Etiquetada (#litres_trial_promo)

Capítulo 3. Elegir o escribir un algoritmo ml (#litres_trial_promo)

Conceptos Básicos (#litres_trial_promo)

Tipos de Algoritmos Populares (#litres_trial_promo)

Lo Que Se Necesita Para Escribir Un Algoritmo Novedoso (#litres_trial_promo)

Capítulo 4. Entrenamiento y despliegue de un algoritmo (#litres_trial_promo)

Programación Involucrada (#litres_trial_promo)

Estático vs Dinámico (#litres_trial_promo)

Ingeniera De Sintonización Y Funciones (#litres_trial_promo)

Tirando Un Algoritmo (#litres_trial_promo)

Capítulo 5. Aplicaciones del mundo real del aprendizaje automático (#litres_trial_promo)

Transportación (#litres_trial_promo)

Recomendación de Productos (#litres_trial_promo)

Financiamiento (#litres_trial_promo)

Asistentes De Voz, Viviendas Inteligentes Y Coches (#litres_trial_promo)

Conclusiones (#litres_trial_promo)

Sobre El Autor (#litres_trial_promo)

Bitcoin Whales Bonus Book (#litres_trial_promo)

Otros libros por Alan T. Norman: (#litres_trial_promo)

Una Última Cosa… (#litres_trial_promo)









Por Que Escribi Este Libro


Bienvenidos al mundo del aprendizaje automático!






La inteligencia artificial está preparada para cambiar el curso de la historia humana, quizás más que cualquier otra tecnología. Una gran parte de esa revolución es el aprendizaje automático.

El aprendizaje automático es la ciencia de enseñar a las computadoras a hacer predicciones basadas en datos. En un nivel básico, el aprendizaje automático implica dar a una computadora un conjunto de datos y pedirle que haga una predicción. Al principio, la computadora tendrá muchas predicciones incorrectas. Sin embargo, en el transcurso de miles de predicciones, la computadora actualizará su algoritmo para hacer mejores predicciones.

Este tipo de computación predictiva solía ser imposible. Las computadoras simplemente no podían almacenar suficientes datos o procesarlos lo suficientemente rápido como para aprender de manera efectiva. Ahora, cada año, las computadoras se están volviendo más inteligentes a un ritmo rápido. Los avances en el almacenamiento de datos y la potencia de procesamiento están impulsando esta tendencia hacia máquinas más inteligentes. Como resultado, las computadoras de hoy están haciendo cosas que eran impensables hace solo una o dos décadas.

El aprendizaje automático ya está afectando tu vida diaria. Amazon utiliza el aprendizaje automático para predecir qué productos querrá comprar. Gmail lo usa para filtrar mensajes de spam de su bandeja de entrada. Sus recomendaciones de películas en Netflix se basan en algoritmos de aprendizaje automático.

Sin embargo, los impactos del aprendizaje automático no se detienen allí. Los algoritmos de aprendizaje automático están haciendo predicciones en todo tipo de industrias, desde la agricultura hasta la atención médica. Además, sus impactos se sentirán en nuevas industrias y formas cada año. A medida que surjan estas nuevas aplicaciones de aprendizaje automático, las aceptaremos gradualmente como parte de la vida normal. Sin embargo, esta nueva dependencia de las máquinas inteligentes es un punto de inflexión en la historia de la tecnología y la tendencia solo se está acelerando.

En el futuro, el aprendizaje automático y la inteligencia artificial generalmente impulsarán la automatización de muchas tareas que los humanos hacen hoy en día. Los automóviles autónomos dependen del aprendizaje automático para el reconocimiento de imágenes y serán cada vez más parte del transporte, al igual que los camiones autónomos y otros vehículos para transportar mercancías. Gran parte de la agricultura y la fabricación ahora está automatizada, por lo que el aprendizaje automático proporciona los alimentos que consumimos y los bienes que utilizamos. La tendencia hacia la automatización solo se está acelerando. Otras aplicaciones de aprendizaje automático podrían cambiar fundamentalmente los trabajos que los humanos hacen día a día a medida que las máquinas se vuelven más hábiles para administrar procesos y completar el trabajo de conocimiento.

Dado que el aprendizaje automático tendrá un impacto tan profundo en la vida cotidiana, es importante que todos tengan acceso a información sobre cómo funciona. Por eso escribí este libro. El panorama actual para la información de aprendizaje automático está dividido.

Primero, hay explicaciones para el público en general que simplifican los conceptos. Estos explicadores hacen que el aprendizaje automático parezca algo que solo un experto podría entender.



En segundo lugar, están los documentos técnicos escritos por expertos para expertos. Excluyen al público en general con jerga y complejidad. Obviamente, escribir y ejecutar un algoritmo de aprendizaje automático es una hazaña técnica enorme y estas explicaciones técnicas son importantes. Sin embargo, hay un vacío en la literatura actual sobre el aprendizaje automático.

¿Qué pasa con el laico que realmente quiere entender esta revolución tecnológica, no necesariamente para escribir código sino para comprender los cambios que ocurren a su alrededor? Comprender los conceptos centrales del aprendizaje automático no debe limitarse a una élite tecnológica. Estos cambios nos afectarán a todos. Tienen consecuencias éticas, y es importante que el público conozca todos los beneficios y desventajas del aprendizaje automático.

Por eso escribí este libro. Si eso te parece interesante, espero que lo disfrutes.




Este Libro No Es Sobre Algoritmos De Aprendizaje De Maquinas De Codificación


Si el manifiesto de una introducción no fue lo suficientemente claro: este no es un libro sobre codificación. No está destinado a los informáticos a aprender sobre cómo crear algoritmos de aprendizaje automático.

Por un lado, no estoy calificado para escribir un libro como ese. Las personas pasan años aprendiendo las complejidades de escribir algoritmos y redes de capacitación. Hay programas de doctorado completos que exploran los bordes del campo, basándose en álgebra lineal y estadísticas predictivas. Si profundiza en los detalles del aprendizaje automático y le encanta lo suficiente como para obtener un doctorado, podría ganar fácilmente $ 300k- $ 600k trabajando para una importante empresa de tecnología. Así de raras y valiosas son estas habilidades.

No tengo esas calificaciones, y creo que eso es algo bueno. Si recogió este libro, significa que es un principiante interesado en el aprendizaje automático. Probablemente no sea técnico, o si lo es, está buscando un libro fundamental para comenzar con los conceptos básicos. Como escritor de tecnología, estoy constantemente aprendiendo sobre tecnologías. Soy estudiante de aprendizaje automático y recuerdo lo que es ser principiante. Puedo ayudar a explicar los conceptos básicos de manera que sean fáciles de entender. Una vez que haya leído este libro, tendrá una sólida comprensión de los principios básicos que facilitarán el paso a un libro más avanzado si desea obtener más información.

Dicho esto, si sientes que ya entiendes los principios básicos o si realmente quieres un libro que pueda enseñarte los aspectos básicos de la escritura y el entrenamiento de un algoritmo de aprendizaje automático, probablemente este no sea el libro para ti.




Un Libro Para El Laico


El objetivo real de este libro es ser una introducción fácil de leer al aprendizaje automático. Mi objetivo es escribir un libro que cualquiera pueda leer, sin dejar de ser fiel a los principios del aprendizaje automático y no de conceptos tontos. Confío en la inteligencia de mis lectores, y no creo que un libro para principiantes necesariamente tenga que sacrificar la complejidad y los matices. Dicho esto, este no es un gran libro, y no es ni mucho menos exhaustivo. Los interesados en el tema querrán profundizar en otros libros e investigaciones.

En este libro, veremos los conceptos básicos y los tipos de aprendizaje automático. Investigaremos cómo funcionan. Luego, exploraremos los problemas de los conjuntos de datos y escribiremos y formaremos un algoritmo. Finalmente, veremos algunos casos de uso del mundo real para el aprendizaje automático y lugares donde el aprendizaje automático podría usarse a continuación.

Una vez más, bienvenido al aprendizaje automático. Vamos a sumergirnos en…




Capítulo 1. Qué es el aprendizaje automático?


El objetivo de este primer capítulo es establecer un marco para el resto de lo que leerá en este libro. Aquí, detallaremos los conceptos básicos que exploraremos con mayor detalle en capítulos futuros. Este libro se basa en sí mismo, y este capítulo es básico.

Dicho esto, el lugar lógico para comenzar es definir a qué nos referimos cuando hablamos de aprendizaje automático.






Mi definición simple es la siguiente: El aprendizaje automático permite que una computadora aprenda de la experiencia.

Eso puede sonar trivial, pero si rompe esa definición, tiene profundas implicaciones.

Antes del aprendizaje automático, las computadoras no podían mejorar desde la experiencia. En cambio, lo que dice el código es lo que hizo la computadora.

El aprendizaje automático, en su explicación más simple, implica permitir que una computadora varíe sus respuestas e introducir un ciclo de retroalimentación para respuestas buenas y malas. Esto significa que los algoritmos de aprendizaje automático son fundamentalmente diferentes de los programas informáticos que los precedieron. Comprender la diferencia entre la programación explícita y el entrenamiento de algoritmos es el primer paso para ver cómo el aprendizaje automático cambia fundamentalmente la informática.




Programación explícita vs. Entrenamiento de algoritmo


Con algunas excepciones recientes, casi todas las piezas de software que ha utilizado en su vida se han programado explícitamente. Eso significa que algún humano escribió un conjunto de reglas para que la computadora las siga. Todo, desde el sistema operativo de su computadora, hasta Internet, hasta las aplicaciones en su teléfono, tiene un código que un humano escribió. Sin los humanos dando a una computadora un conjunto de reglas para actuar, la computadora no podría hacer nada.

La programación explícita es genial. Es la columna vertebral de todo lo que hacemos actualmente con las computadoras. Es ideal para cuando necesita una computadora para administrar datos, calcular un valor o hacer un seguimiento de las relaciones por usted. La programación explícita es muy poderosa, pero tiene un cuello de botella: el humano.

Esto puede ser problemático cuando queremos hacer cosas complejas con una computadora, como pedirle que reconozca una foto de un gato. Si tuviéramos que usar programación explícita para enseñarle a una computadora qué buscar en un gato, pasaríamos años escribiendo código para cada contingencia. ¿Qué pasa si no puedes ver las cuatro patas en la foto? ¿Qué pasa si el gato es de un color diferente? ¿Podría la computadora elegir un gato negro sobre un fondo negro o un gato blanco en la nieve?

Estas son todas las cosas que damos por sentado como humanos. Nuestros cerebros reconocen las cosas rápida y fácilmente en muchos contextos. Las computadoras no son tan buenas en eso, y se necesitarían millones de líneas de código explícito para decirle a una computadora cómo identificar un gato. De hecho, es posible que no sea posible programar explícitamente una computadora para identificar al 100% con precisión a los gatos, porque el contexto siempre puede cambiar y estropear su código.

Aquí es donde entran en juego los algoritmos. Con la programación explícita intentamos decirle a la computadora qué es un gato y tener en cuenta cada contingencia en nuestro código. En contraste, los algoritmos de aprendizaje automático le permiten a la computadora descubrir qué es un gato.

Para comenzar, el algoritmo puede contener algunas características clave. Por ejemplo, podríamos decirle a la computadora que busque cuatro patas y una cola. Luego, alimentamos el algoritmo con muchas imágenes. Algunas de las imágenes son gatos, pero otras pueden ser perros, árboles o imágenes aleatorias. Cuando el algoritmo hace una suposición, reforzaremos las suposiciones correctas y daremos comentarios negativos por las suposiciones incorrectas.

Con el tiempo, la computadora usará el algoritmo para construir su propio modelo de qué buscar para identificar a un gato. Los componentes en el modelo de la computadora pueden ser cosas en las que ni siquiera pensamos al principio. Con más refuerzo y miles de imágenes, el algoritmo mejorará gradualmente en la identificación de gatos. Es posible que nunca alcance el 100% de precisión, pero será lo suficientemente preciso como para reemplazar una etiqueta de imagen de gato humano y será más eficiente.

Los algoritmos son pautas, pero no son reglas explícitas. Son una nueva forma de decirle a una computadora cómo abordar una tarea. Presentan bucles de retroalimentación que se corrigen automáticamente en el transcurso de cientos o miles de pruebas en una tarea.




Definiciones: inteligencia artificial vs. Aprendizaje automático vs redes neurales


Este libro trata sobre el aprendizaje automático, pero ese término se ajusta a un contexto más amplio. Dado que el aprendizaje automático está creciendo en popularidad, está recibiendo mucha cobertura de noticias. En esos artículos, los periodistas a menudo usan los términos inteligencia artificial, aprendizaje automático y redes neuronales de manera intercambiable. Sin embargo, hay ligeras variaciones entre los tres términos.






La inteligencia artificial es el más antiguo y más amplio de los tres términos. Acuñada a mediados del siglo XX, la inteligencia artificial se refiere a cualquier momento en que una máquina observa y responde a su entorno. La inteligencia artificial contrasta con la inteligencia natural en humanos y animales. Con el tiempo, sin embargo, el alcance de la inteligencia artificial ha cambiado. Por ejemplo, el reconocimiento de caracteres solía ser un gran desafío para la IA. Ahora, es una rutina y ya no se considera parte de la IA. A medida que descubrimos nuevos usos para la IA, los integramos en nuestro marco de referencia para lo que es normal, y el alcance de la IA se extiende a lo que sea que sea la próxima novedad.

El aprendizaje automático es un subconjunto específico de IA. Ya hemos pasado algún tiempo definiéndolo en este capítulo, pero se refiere a darle a la máquina un ciclo de retroalimentación que le permite aprender de la experiencia. Como término, el aprendizaje automático solo existe desde la década de 1980. Recientemente, en los últimos 10-15 años, hemos tenido el poder de procesamiento y almacenamiento de datos para realmente comenzar a implementar el aprendizaje automático a escala.






Las redes neuronales son un subconjunto del aprendizaje automático y son la tendencia más popular en la industria en este momento. Una red neuronal consta de muchos nodos que trabajan juntos para producir una respuesta. Cada uno de los nodos más bajos tiene una función específica. Por ejemplo, al mirar una imagen, los nodos de bajo nivel pueden identificar colores o líneas específicos. Los nodos posteriores pueden agrupar las líneas en formas, medir distancias o buscar densidad de color. Cada uno de estos nodos se pondera por su impacto en la respuesta final. Al principio, la red neuronal cometerá muchos errores, pero en el transcurso de muchas pruebas actualizará la ponderación de cada nodo para mejorar la búsqueda de la respuesta correcta.

Ahora, cuando lea un artículo sobre inteligencia artificial, aprendizaje automático o redes neuronales, comprenderá la diferencia. La clave es darse cuenta de que son subconjuntos. Las redes neuronales son solo un tipo de aprendizaje automático que a su vez es solo una parte de la inteligencia artificial.




Conceptos Básicos





Конец ознакомительного фрагмента.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=48773588) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.


Aprendizaje Automático En Acción Alan T. Norman
Aprendizaje Automático En Acción

Alan T. Norman

Тип: электронная книга

Жанр: Программирование

Язык: на испанском языке

Издательство: TEKTIME S.R.L.S. UNIPERSONALE

Дата публикации: 16.04.2024

Отзывы: Пока нет Добавить отзыв

О книге: ¿Está buscando un libro fundamental para comenzar con los conceptos básicos del aprendizaje automático? Mi libro le explicará los conceptos básicos de manera que sean fáciles de entender. Una vez que haya leído este libro, tendrá una sólida comprensión de los principios básicos que facilitarán el paso a un libro más avanzado si desea obtener más información.

  • Добавить отзыв