Запутанный мозг. Путеводитель по нейропсихологии

Запутанный мозг. Путеводитель по нейропсихологии
Ники Хейз


PROмозг
Мозг дает нам возможность видеть, слышать и ощущать окружающий мир; он придает смысл всем нашим действиям и позволяет совершать эти самые действия: целенаправленно двигаться, делать то, что мы желаем или считаем нужным. Но его способности куда обширнее: мозг может разными способами запоминать и хранить информацию, связанную с нашими умениями, знаниями и навыками так, что мы действуем абсолютно автоматически; он же позволяет нам устанавливать взаимоотношения с окружающими и даже привязываться к ним. Кроме того, благодаря особенному развитию и устройству мозга мы обладаем эмоциями: испытываем гнев, страх, счастье и отвращение, откликаемся на похвалу и ласку; мы бываем взволнованными и бдительными или спокойными и расслабленными, а можем просто спать. Все эти состояния сознания – часть работы нашего мозга.

«Запутанный мозг» – настоящее руководство по нейропсихологии для начинающих; Ники Хейз структурированно и на примерах объясняет все аспекты работы мозга человека – от нервной системы, его структур, передачи информации до способности к обучению – и подходит к определению того, что же значит быть человеком.





Ники Хейз

Запутанный мозг. Путеводитель по нейропсихологии



Nicky Hayes

YOUR BRAIN AND YOU

A Simple Guide to Neuropsychology



© Nicky Hayes, 2018

© Перевод на русский язык. ООО «Издательство АСТ», 2022

© Оформление. ООО «Издательство АСТ», 2022




Предисловие


Эта книга – о мозге: о том, как он работает, делая нас теми, кем мы являемся. Исследования мозга продолжаются и по сей день, мы получаем все больше и больше знаний о том, какие части мозга чем заведуют и как все эти разные части взаимосвязаны. А это далеко не просто: за все, что мы делаем, осмысливаем, говорим и чувствуем, отвечают разные участки мозга, действующие в унисон. Именно эта совокупная работа участков мозга и делает нас самими собой. Но это не значит, что мы с вами – просто совокупность нервных импульсов. Мозг влияет на наши действия, но и наши действия тоже влияют на мозг, изменяя его. Каковы мы как люди – это всецело зависит от нашего выбора и от тех решений, которые мы принимаем в течение жизни. Поэтому цель нашего исследования – понять, как нервные клетки и мозг помогают нам сделать тот или иной выбор. Еще один аспект современной науки о мозге – это нейроразнообразие; другими словами, она учит нас тому, что все мы различны. Каждый мозг по-своему индивидуален и своеобразен, в силу чего каждый из нас наделен разными талантами и умениями, а иногда и целым набором таких характеристик, которые кажутся нам вполне обычными, хотя на деле они совершенно необычны. Из этой книги вы узнаете о том, как один участок мозга выполняет одну функцию, тогда как одновременно с ним другой участок выполняет совсем другую. Здесь важно помнить, что подобные простые описания ни в коем случае не воссоздают полной картины в ее разнообразии и целостности: мозг может меняться; проторенные пути мышления могут исчезать и восстанавливаться, используя для этого другие клетки; мозг некоторых людей с рождения наделяет их необычными способностями; и один из нас абсолютно не идентичен другому, но в то же время каждый по-своему чудесен и неповторим! И каждый из нас наделен поразительным мозгом. И эта книга, я надеюсь, поможет убедить вас в том, насколько этот орган поразителен.



    Ники Хейз




Глава 1. Что такое мозг



Из этой главы вы узнаете:

? как развивался человеческий мозг;

? каковы основные элементы мозга;

? как работают таламус и лимбическая система;

? какова функция головного мозга.


* * *

Что делает человека особенным? На этот вопрос отвечают по-разному, причем каждый по-своему. Предположения выдвигаются самые разные: это и умение сочинять и рассказывать истории, и владение навыками работы в коллективе, и способность сохранять информацию, и умение смеяться, воображать, пользоваться языком, учиться и решать сложные задачи.

Выдвигалось даже предположение, что мы отличаемся тем, что практически ничем не отличаемся: у нас нет ни особенных рогов, ни зубов, ни других природных орудий защиты и нападения; даже способностью быстро бегать мы тоже не наделены. И хотя мы можем выполнять всевозможные физические движения и даже тяжелую физическую работу, всегда найдутся животные, которые могут делать это гораздо лучше нас. А поскольку мы не выделяемся чем-то особенным в отношении физических способностей, умений и признаков, нам ничего не остается, как самыми разными способами выполнять то, что мы умеем и на что способны.

Все сказанное выше в той или иной мере справедливо. Но все это упирается в некую основу, некую реалию, которая и дает нам возможность выполнять все это, и этой основой, этой реалией является по-особенному развитый мозг, который есть только у нас, людей, и который позволяет нам особым образом взаимодействовать с нашими мирами – физическими, социальными и воображаемыми. Мозг – это действительно нечто особенное, и именно он делает нас, людей, такими, какими мы являемся.

Мозг дает нам возможность видеть то, что нас окружает. Он наделяет смыслом все наши действия и дает нам возможность совершать эти самые действия: целенаправленно двигаться и делать то, что мы считаем нужным или желаемым. Он наделяет нас способностью слышать: улавливать и осмысленно интерпретировать вибрации воздуха, определять, откуда они исходят и какова их причина. Эту же функцию мозг выполняет и для других наших чувств, включая сенсорные рецепторы, которыми снабжено наше тело и которые сообщают нам, чем именно заняты наши мышцы, связки и сочленения. Мозг позволяет нам самоопределиться в этом материальном мире и установить с ним отношения: воспринимать информацию от него и реагировать в соответствии с ней.

Но в действительности наш мозг способен на гораздо большее. Он дает нам возможность запоминать происходящее, причем различными способами. Мозг не только сохраняет сознательные воспоминания вроде адреса и ПИН-кода, но и позволяет нам вспомнить то, что происходило в прошлом, и даже помнить (бо?льшую часть времени) о том, что нам надлежит сделать в будущем. Он хранит всю необходимую информацию, связанную с нашими умениями и навыками, так что мы совершаем действия или прибегаем к знаниям совершенно автоматически, ни на миг не задумываясь о том, с какими шагами это связано и в какой последовательности их совершать; и он же хранит все наработанные нами стереотипы, шаблоны мышления и значения, так что мы сразу же распознаем смысл или разумность всего нового, с чем сталкиваемся. Он даже наделяет нас умением воображать или представлять то, что случится в будущем, – или то, что вообще не случится.

Как существам социальным нам важно, чтобы мы умели распознавать других людей, их лица и внешний вид, отличать знакомых от незнакомых, своих от чужих, – и этим умением тоже нас наделяет мозг. Он же позволяет нам закреплять наши привязанности, устанавливать и развивать наши взаимоотношения с окружающими (а они суть основа жизни в социуме), а также общаться с другими людьми, пользуясь для этого словами, знаками или символами. На более абстрактном уровне мозг дает нам возможность управлять тремя жизненно важными навыками: чтением, письмом и счетом (арифметикой), – за каждый из которых отвечают особые участки мозга. Но быть человеком – это нечто большее, чем просто обладание психическими навыками такого рода; это подразумевает способность проявлять симпатию и сочувствие по отношению к другим, а ведь именно она и делает нас людьми. И в этом смысле мозг тоже снабжает нас всем необходимым, а именно механизмами самопознания, самоопределения и сочувствия.

Кроме того, у нас есть эмоции, а они возможны только благодаря особому развитию и устройству нашего мозга. Мы испытываем чувства гнева, страха, счастья и отвращения, мы ощущаем удовольствие и боль и откликаемся на похвалу и ласку. Бывают такие ситуации, когда мы настороже и бдительны, а бывают такие, когда мы возбуждены и взволнованы; бывают ситуации, когда мы спокойны, расслаблены или находимся в состоянии задумчивости, а бывают и такие, когда мы просто погружены в сон. Эти состояния сознания – часть работы нашего мозга. А кроме того, как люди, живущие современной жизнью, мы ежедневно в самых разных ситуациях принимаем решения. И принимать их на самых различных уровнях, от решения выпить чашечку кофе до приобретения дома, помогает наш человеческий мозг. Мозг – поразительная структура, и в этой книге мы рассмотрим все указанные аспекты его деятельности.




Как появился мозг


Почему наш мозг так сложен? Каким образом он достиг такой степени сложности? Если мы обратимся к истории эволюции, то обнаружим, что у первых животных вообще не было мозга: это были простейшие одноклеточные организмы, чем-то напоминающие современную амебу; они плавали в жидкой среде и поглощали частички пищи, которые вместе с водой просачивались сквозь их прозрачную оболочку. По мере развития более сложных животных организмов одним из наиболее важных их преимуществ стало то, что они научились определять близлежащие источники пищи. У них начали развиваться специализированные клетки, которые способны выявлять химические изменения в окружающей среде, вызванные находящейся неподалеку пищей, тогда как другие клетки специализировались на том, чтобы направлять тело к этой пище. Кроме того, у них развивалась центральная связующая система, благодаря которой информацию, воспринимаемую ими из окружающей среды, они использовали для того, чтобы подстраивать под нее свои действия и, соответственно, направлять к ней свои движения. Эта центральная связующая система действовала как координатор между поступающей информацией и конечным действием.

И это было начало всего. Первая нервная система была устроена очень просто: она представляла собой ступенеобразную сеть из волокон, пронизывающих тело и соединенных с простыми трубками, которые мы называем нервными трубками. Нечто подобное есть у современных плоских червей, или планарий. Это, так сказать, основа основ, базовая нервная система, но мы уверены в ее эффективности, поскольку планарии здравствуют и по сей день. По мере того как организмы животных становились все сложней, усложнялась и структура нервной системы. Передний конец нервной трубки начал увеличиваться: это был своего рода координационный центр, принимавший информацию от датчиков-извещателей, распознававших источник пищи, света или какую-то другую информацию вроде вибраций, говоривших о том, что поблизости находится нечто большое. Эти датчики в конце концов стали органами чувств, а увеличившийся конец нервной трубки стал мозгом. Другая же часть трубки, шедшей вдоль тела, преобразовалась в позвоночник, а клетки, передававшие информацию к нему и от него, стали соматическими нервами. Но, каким бы сложным ни было это устройство, в основе своей оно оставалось (и остается сейчас) всего лишь трубкой. Просто сегодня на своем конце она имеет гораздо больше шишковидных наростов, чем у той же планарии.

К моменту появления динозавров устройство животных стало куда более сложным. Образовавшийся из утолщения на переднем конце нервной трубки мозг хоть был и не очень большой, но уже имел различные части, что давало ему возможность координировать различные механизмы тела, необходимые для поддержания жизнедеятельности, – потоотделение, пищеварение и сердцебиение. Этот мозг принимал информацию от органов чувств, ставших гораздо более сложными: они были не просто снабжены отдельными органами и нервами, но и неделимо связаны со специализированными участками мозга. Движение и равновесие тоже стали жизненно важными функциями, и развитие значительной части мозга было направлено на то, чтобы управлять ими. Тогда же начал развиваться некий прообраз памяти, пусть и не такой сложной, как та, которой мы пользуемся сегодня. Мозг у динозавра был крошечным по сравнению с нашим мозгом, мозгом современного человека, но, как свидетельствуют палеонтологи, даже такой мозг справлялся со своими задачами довольно-таки хорошо. Динозавры царствовали на суше многие миллионы лет, а их потомки – птицы – соседствуют с нами до сих пор.

То же самое можно сказать и о мозге других представителей животного царства вроде рыб, амфибий и пресмыкающихся: он развивался и усложнялся. Адаптация к различным экосистемам и источникам питания привела к развитию самых разных видов живых тварей. Одни экосистемы побуждали их развивать чувство обоняния, доведя его до высот совершенства и утонченности, поэтому часть мозга, заведовавшая обонянием, соответственно увеличилась. Другие экосистемы требовали острого зрения, а стало быть, увеличилась та часть мозга, которая отвечала за зрение. Некоторые животные выработали предельную чувствительность к вибрациям воздуха, а это, в свою очередь, привело к увеличению центра мозга, отвечавшего за слух, – и т. д. в том же духе. По мере развития животных, адаптировавшихся к окружающей среде, развивался и их мозг – с тем, чтобы координировать эту адаптацию.

Во времена динозавров возник другой вид животных – млекопитающие. У них стала развиваться другая особая часть мозга, которая контролировала и регулировала температуру тела. В результате млекопитающие могли вести активный образ жизни по ночам, избегая тем самым встреч с пресмыкающимися хищниками, зависевшими от солнечного света и получавшими от него тепло и энергию. Развитие млекопитающих пошло иными путями: они начали вскармливать молоком своих детенышей и обеспечивать их пищей после рождения, что давало возможность молодняку в безопасности изучать и исследовать окружающий их физический мир. Небольшая часть мозга млекопитающих специализировалась на адаптации и обучении, благодаря чему они могли быстро приспосабливаться к непредсказуемым или изменившимся условиям окружающей среды. Все это привело к тому, что, когда мир изменился и динозавры вымерли, млекопитающие сумели выжить и воспользовались теми экологическими ресурсами, которые динозаврам были уже ни к чему.

Мозг млекопитающих, как и мозг других животных, тоже адаптировался к требованиям среды. Животные, служившие добычей для хищников, стали необычайно восприимчивы к сенсорной информации, выработав острые рефлексы, позволявшие им быстро реагировать на внешнюю угрозу. Но и хищные животные тоже развивались сходным образом, поскольку инстинкт выживания требовал, чтобы они ни в чем, в том числе и в быстроте реакций, не уступали жертвам и могли схватить их. Одни животные были травоядными и жили только за счет растений, тогда как другие были всеядными и потребляли любую пищу, какую только им удавалось найти. И – что самое важное – некоторые из них жили социальными группами и сообща пользовались природными ресурсами.

Поскольку социальная жизнь стала важным фактором выживания, требовавшим постоянного взаимодействия и сотрудничества, это привело к тому, что млекопитающие стали жить в постоянно меняющейся среде, поэтому наиболее развитыми у них оказались те части мозга, которые позволяли им приспосабливаться к изменениям, общаться между собой и передавать важную информацию. Поэтому именно животным, жившим социальными группами, удалось развить многоцелевой мозг, наделявший их способностью адаптироваться к различным условиям, взаимодействовать с различными особями, отслеживать новые возможности и решать проблемы. И в одной из групп млекопитающих эти способности возымели столь большую роль, что она в конце концов возобладала над всеми другими.

Когда мы смотрим на головной мозг современного человека, то главным образом видим две его половины: ту часть, которую мы используем для обдумывания, размышлений, учебы, общения, принятия решений, воображения, да и всего того, что делает нас людьми, и другую, вмещающую более древние участки мозга, но и более обширную, подчиняющую себе почти весь мозг. А поскольку именно эта часть, эта внешняя оболочка, или кора головного мозга, делает бо?льшую часть работы, то мозг изобилует складками и морщинами, позволяя уместить в небольшое по объему пространство черепа значительную поверхность. Человеческий мозг – одна из самых поразительных вещей, известных нам сегодня, и поверьте: пока мы не оставим попыток в полной мере понять, почему он так устроен и как он действует, безработица не грозит нашим ученым – ни нынешним, ни грядущим их поколениям.




Головной мозг


В этой книге мы рассмотрим, что именно известно современным ученым о работе головного мозга и его различных функциях. Но прежде чем начать, давайте взглянем на различные части мозга: даже путем простого осмотра можно многому научиться и понять, как шло развитие каждой его части. Давайте для начала рассмотрим самые основные нервные функции, которые необходимы развивающемуся животному: способность двигаться и умение избегать боли. Это возвращает нас к древней нервной трубке. В нашей центральной нервной системе есть эквивалент такой трубки, хотя он, разумеется, имеет неизмеримо более сложную структуру. Это позвоночник – трубка с нервными волокнами, которая тянется вдоль всей спины, соединяя нервные волокна нашего тела с мозгом. Если мы рассмотрим позвоночник в поперечном сечении, то увидим, что он действительно напоминает трубу: он тоже имеет полость. Полость эта заполнена питательной жидкостью – так называемым серым веществом, состоящим по большей части из тел нервных клеток. В свою очередь, серое вещество окружено белым веществом – нервными волокнами, переносящими информацию от мозга и к мозгу. Поэтому позвоночный столб – основной путепровод для информации, которой обмениваются между собой тело и мозг. Вот почему люди, у которых поврежден позвоночник, часто оказываются парализованными: их мозг пытается привести мышцы в движение, но приказы, посылаемые мозгом, до мышц не доходят.






Рисунок 1.1. Позвоночник в поперечном сечении



Однако не всякое движение управляется мозгом. Позвоночник тоже играет здесь определенную роль: он, например, контролирует некоторые наши рефлексы, в частности быстрое сокращение мышц, происходящее в ответ на боль. Это наиболее ярко выражено в тех случаях, когда вы непроизвольно отдергиваете руку от горячей поверхности. Вы это делаете мгновенно, не задумываясь, поскольку сообщение о том, что поверхность горячая и вызывает боль, посылается от органов чувств прямо по позвоночнику. Мгновенно проносясь по этому проводнику, оно передается нервным клеткам, и уже они дают команду отдернуть руку. Так что указанному сообщению или сигналу совсем необязательно проделывать весь путь от рецепторов к мозгу. Это называется рефлексом, а поскольку рефлекс – основной механизм выживания, он контролируется древнейшей частью нервной системы. Происходит следующее: сообщение – боль, неожиданное давление или что-либо еще – воспринимается сенсорными нервными клетками, которые передают эту информацию нервным клеткам позвоночника. Отсюда сообщение незамедлительно передается двигательным, или моторным, нервным клеткам; те же связаны с мышцами и мгновенно дают им команду сократиться. Именно поэтому вы отдергиваете руку, вскидываете вверх ногу или реагируете так, как диктует непроизвольный рефлекс.

Верхняя часть позвоночника утолщается и переходит в собственно мозг, становится его частью. Утолщенная часть называется костным мозгом, и если мы примем во внимание, что именно эта часть нервной системы подверглась развитию сразу вслед за позвоночником, мы без труда поймем, что она тоже неразрывно связана с базисными функциями. Костный мозг – это та часть головного мозга, которая регулирует основные функции тела, такие как дыхание, глотание, пищеварение и сердцебиение – функции, наиболее существенные для всех животных, не считая самых простейших. Таким образом, головной мозг – это система, наделяющая животное способностью двигаться, реагировать на боль, есть, дышать и распределять питательные вещества по всему телу. Но если животное стремится выжить в этом невероятно сложном мире, ему необходимо быть настороже, быть готовым к бегству, если что-то угрожает его жизни. Продвинувшись чуть вверх от костного мозга, мы обнаружим, что ствол мозга становится еще толще, превращаясь в то, что в нейрохирургии называется средним мозгом. Средний мозг состоит из нескольких различных частей. Одна из них – это ретикулярная активирующая система, которая регулирует различные состояния организма: сон, бодрствование и внимание. У людей и других высших млекопитающих ретикулярная активирующая система способна «переключаться» на более обширные зоны коры головного мозга, так что мы оказываемся бдительны и внимательны ко всему, что происходит вокруг нас. У этой системы несколько сенсорных путей передачи информации и множество связей с другими областями мозга. Если мы как следует поразмыслим о ее эволюционном происхождении и о том, сколь насущна для животных бдительность для выживания в этом опасном мире, мы поймем, почему эта часть мозга подверглась развитию в первую очередь.

Средний мозг также включает в себя верхние и нижние двухолмия – овальные структуры, отвечающие за самые базисные сенсорные процессы: верхние двухолмия – за зрение и осязание, а нижние – главным образом за слух. Они не связаны напрямую с высшими уровнями мозга, зато имеют прямую связь с нашим вниманием и нашей двигательной системой, сразу же оповещая нас об опасности, например в случае внезапной вспышки или взрыва. Понятно, что эти системы чрезвычайно полезны для животных в процессе выживания, ведь по мере развития мозга усложняется также и их манера движения. Еще одна часть среднего мозга – варолиев мост – служит главным маршрутом, по которому осуществляется связь между телом и мозжечком. Варолиев мост не только координирует центр, отвечающий за плавность движений, но и способствует процессам сна, сопровождаемого сновидением, причем это относится как к животным, так и к людям. Есть также мнение, что он специально сформировался в процессе эволюции, с тем чтобы помочь животным в образовании нейронных проводящих путей, необходимых для поддержания плавного движения. Когда мы видим, например, спящую собаку, которой снится сон, нам ясно, что она во сне бежит за чем-то или охотится на кого-то, и это, возможно, напрямую связано с отработкой физических навыков. В главе 6 мы еще вернемся к вопросу о том, как мысленная отработка движений способствует развитию и закреплению навыков и умений.






Рисунок 1.2. Структура головного мозга



Варолиев мост связан с мозжечком – морщинистым выпуклым телом, выступающим в задней части головного мозга. Его иногда называют «малым мозгом», поскольку он способен осуществлять куда более сложные функции, чем просто поддержание в готовности двигательной системы животного. Как видим, он играет важную роль и в развитии навыков и умений. Когда мы впервые осваиваем новый навык, наши движения поначалу слишком резки, порывисты и неуклюжи, поскольку мы сознательно задумываемся над тем, как осуществить то или иное движение. Но по мере того, как мы нарабатываем эти движения, контроль над последовательностью действий переходит к мозжечку, и движения становятся плавными и автоматическими, так что нам больше нет нужды задумываться над ними. Мозжечок не планирует самостоятельных движений (это делает головной мозг), но он дает гарантию того, что все наши действия скоординированы, хорошо рассчитаны и точны.

Как и сам головной мозг, мозжечок тоже делится на две половины, а его поверхность покрыта глубокими морщинами и складками, очень напоминающими мехи аккордеона. Из этого следует, в частности, что внешние слои столь же важны для функционирования мозжечка, как и внутренние (впадины и складки увеличивают общую площадь поверхности). Складки свидетельствуют о том, что поверхности мозжечка отводится большая часть его структуры, а другая, меньшая, включает в себя нервные волокна, которые находятся непосредственно под складками, и небольшую заполненную жидкостью полость, называемую желудочком, расположенную в месте, где мозжечок смыкается с варолиевым мостом. Мозжечок, помимо всего прочего, осуществляет контроль над равновесием – функцией, которой ведает небольшая шишка, расположенная как раз между двумя половинами. Большинство лекарств, назначаемых врачом с целью восстановления двигательных функций, если они были нарушены той или иной болезнью, воздействуют именно на эту область мозга. У людей мозжечок также включает в себя несколько нервных путей, которые задействованы в таких процессах, как привлечение внимания, усвоение языка, а также реакции на страх и удовольствие. Как видите, мозжечок – очень важная часть мозга у всех высокоорганизованных животных. Эти структуры в совокупности поддерживают все наиболее важные процессы, протекающие в организме, поэтому понятно, почему именно они развивались в первую очередь.




Таламус и лимбическая система


Затем в мозге начали развиваться еще более сложные структуры. Если у более простых животных наличествовали лишь органы чувств того или иного рода, реагировавшие на свет, вибрации или изменения в химическом составе жидкости, за счет которой они жили, то у некоторых более сложных представителей животного мира начали развиваться, соответственно, и более сложная система восприятия, и более сложные структуры мозга. Например, в промежуточном мозге, т. е. в пространстве выше среднего мозга, но ниже головного, находится большая область компактных клеток, известная как таламус. Он тоже делится на две части и играет роль своеобразной релейной станции для приема и усиления сенсорной информации и двигательных сигналов, идущих к мышцам.

Таламус, принимая информацию от чувствительных нервов, от глаз и ушей, совершает определенную дешифровку этих сигналов, затем передает эту информацию в головной мозг, а уже от головного мозга он принимает команды о тех или иных исходящих движениях и передает их мышцам тела. Как и некоторые другие подкорковые структуры, он в известной мере участвует также в процессах сна и бодрствования: эти состояния не контролируются исключительно какой-то одной зоной головного мозга, а находятся в ведении многих областей.

Вокруг таламуса расположено множество других более мелких структур, известных под общим названием «лимбическая система». Маленький «довесок» непосредственно под таламусом, называемый гипоталамусом, играет особенно важную роль в жизни млекопитающих, поскольку он регулирует температуру тела. Именно способность поддерживать внутреннюю температуру тела на постоянном уровне позволяет нам быть активными по ночам или на холоде. Видимо, есть некий резон в том факте, что небольшие по размеру млекопитающие живут в подземных норах; во всяком случае, это может служить объяснением того, почему они смогли пережить тот глобальный массовый катаклизм, который смел с лица Земли динозавров.

Гипоталамус не только регулирует температуру тела, но и выполняет множество других функций; в частности, он поддерживает в теле гомеостаз, т. е. следит за тем, чтобы все процессы в теле совершались при постоянных и оптимальных условиях. Например, если уровень жидкости в теле опускается ниже оптимального (а оптимальный уровень жидкости – залог нашего выживания), гипоталамус вызывает чувство жажды, под действием которого вы пьете воду или другую жидкость; а если уровень глюкозы в крови опускается ниже определенной точки, он вызывает чувство голода, побуждающее вас искать пищу, чтобы насытиться. Если вам становится слишком холодно, он вызывает дрожь, под действием которой мышцы выделяют немного тепла, а если вам слишком жарко, он вызывает отделение пота, при испарении которого тело охлаждается. Следовательно, гипоталамус действует как внутренний регулятор, поддерживающий в оптимальном режиме основные механизмы тела, дабы они работали должным образом. В силу того что гипоталамус находится непосредственно под таламусом (греческое слово hypo означает «под»), он оказывается связанным со всеми древними участками мозга, которым он может в случае необходимости посылать соответствующие сигналы.






Рисунок 1.3. Элементы лимбической системы



Эти сигналы посылаются отчасти через нервные клетки и обширную сеть их связей, а отчасти – за счет выделения гормонов. Гормоны – это химические вещества, назначение которых заключается в том, чтобы стимулировать протекание физиологических процессов в организме или воздействовать на железы внутренней секреции, побуждая их, в свою очередь, выделять соответствующие гормоны. Они, в частности, важны и необходимы для поддержания таких состояний организма, как рост, беременность, возбуждение или тревога. В совокупности железы внутренней секреции образуют эндокринную систему, а гипоталамус – это основная сеть, через которую мозг связан с эндокринной системой.

У лимбической системы есть и множество других частей, одна из них – это гиппокамп (в переводе с греческого – «морской конек»; название обусловлено внешним сходством этого органа с данным морским животным), небольшая изогнутая структура, расположенная под головным мозгом. Гиппокамп просто необходим для нашей памяти. В частности, он помогает нам собирать и сохранять разрозненные воспоминания, увязывая их в долговременную памятную картину. Люди с поврежденным гиппокампом (а к этому часто ведет длительное употребление алкоголя при минимуме еды) страдают слабой памятью: они не способны сохранять свежие воспоминания. Этот синдром, нередко приводящий к трагическим последствиям, известен в медицине как синдром Корсакова.


Случай из практики: синдром Корсакова



Случай, описанный неврологом Оливером Саксом, интересен тем, что у его пациента, 60-летнего мужчины, синдром Корсакова проявился, когда ему было 30. Повреждение гиппокампа привело к тому, что тот утратил способность сохранять свежие воспоминания, а имел лишь те, которые «унаследовал» из поры юности. Это означало, что каждый день, когда он глядел на себя в зеркало, мужчина испытывал неприятное потрясение, ибо в старике, которым он стал, не признавал самого себя и не помнил ничего из того, что с ним случилось в недавнем прошлом.


Гиппокамп имеет дело и с другими формами памяти, например с пространственной, т. е. с ориентацией на месте, когда мы помним не только то, где сами находимся, но и где расположены другие известные нам объекты и ориентиры. Например, лондонские таксисты знают наизусть и держат в памяти буквально весь город: это нужно для того, чтобы сдать экзамен на знание города, дающий право на водительскую лицензию. Гиппокамп у них сильно увеличен в размере, что является результатом более расширенной пространственной памяти. Поэтому все, что мы делаем в жизни, может либо ослаблять деятельность нашего мозга, либо улучшать ее. Все зависит исключительно от нашего выбора (как действует память и какие участки мозга управляют функцией памяти, мы более подробно рассмотрим в главе 7).

Если подойти к этому с точки зрения эволюции, становится вполне очевидно, что способность ориентироваться на местности и создавать мысленные карты может существенно помочь животным в борьбе за выживание. Исследования показывают, например, что мыши, которым была дана возможность изучить не имевший запасных выходов лабиринт, буквально замирали на месте, когда неожиданно в том или ином месте наталкивались на кошку; в то же время мыши, лишенные такой возможности, при встрече с кошкой бросались прочь в поисках выхода. Первые мыши, исследовав лабиринт и хорошенько его запомнив, понимали, что выхода нет, поэтому при встрече с кошкой замирали на месте, чтобы не привлекать к себе внимания, ибо в данном случае это наилучший выход. К сожалению, мы не знаем, дозволялось ли кошке ловить мышей в ходе эксперимента и какова была конечная судьба последних. Однако в то время, когда проводились эти опыты (1960-е годы), этике отношений с животными вообще не уделялось никакого внимания, поэтому экспериментаторам, в принципе, было все равно, выживут мыши или нет. В наше время подобные исследования, к счастью, не проводятся. Но это нисколько не меняет сути дела, а суть эта в том, что знание собственного места нахождения, безусловно, сильно помогает в борьбе за выживание.

Другая важная часть лимбической системы – это миндалевидная железа, или просто миндалина, хотя чаще всего ее называют миндалевидным телом. Миндалина – эмоциональный центр мозга; она состоит из двух миндалевидных структур, расположенных в глубине правой и левой височных долей, в непосредственной близости от гиппокампа. Миндалина помогает мозгу определять опасность и реагировать на нее, а также активизирует другие наши эмоции – как положительные, так и отрицательные. В частности, ее роль сводится к тому, чтобы, работая совместно с гиппокампом, консолидировать воспоминания, особенно эмоциональные. Доказано, что мы лучше запоминаем события, если им предшествует сильное эмоциональное переживание, а это частично обусловлено именно активностью миндалины (к ней мы будем возвращаться в этой книге еще неоднократно, в различных ее главах, уделив ей особое внимание в главе 8).

К числу частей лимбической системы относятся и базальные ядра (ганглии) – так называется группа клеток, расположенных в глубине белого вещества лобных долей мозга. Эти клетки помогают организовывать движения (путем выбора конкретных действий) в зоне мозга, называемой путамен, и подавлять или сдерживать эти действия до тех пор, пока мы не убедимся, что они наилучшим образом подходят для данной ситуации. Базальные ядра включают в себя так называемые хвостатые ядра, участвующие в планировании движений, координации нарабатываемых привычек и действий, основанных на правилах, а также область, известную в анатомии как бледный шар (globus pallidus), предназначенную для регулировки всего свода движений, чтобы они были скоординированными и плавными. Как вы понимаете, базальные ядра неразрывно связаны с головным мозгом, поэтому повреждение любой из этих областей может привести к разного рода серьезным проблемам с двигательным аппаратом.

Поясная кора – это большая зона мозга, расположенная над мозолистым телом. Она служит продолжением головного мозга, но часто рассматривается как составной элемент лимбической системы, частично из-за того, что она связана с этой системой и тесно взаимодействует с другими ее частями, такими как гипоталамус и миндалина. Она отвечает за эмоции, память и процесс обучения; среди других ее функций можно назвать, например, координацию: поясная кора воссоздает ассоциации тех или иных запахов и образов с приятными или неприятными воспоминаниями. Также она участвует в регулировании агрессивных поступков и активации нейронных проводящих путей, стимулируемых нашими эмоциональными реакциями на боль.

Таким образом, лимбическая система активно задействована в таких процессах жизнедеятельности, как эмоции, память и движения, – все они необычайно важны для высокоорганизованных животных вроде млекопитающих и необходимы для выживания в этом сложном мире. Другие животные – пресмыкающиеся, рыбы и земноводные – тоже обладают этими структурами, но какую именно роль они играют в их организме, мы до конца еще не выяснили. Что же касается млекопитающих, их эмоций и механизмов обучения, то о них нам известно гораздо больше, отчасти потому, что это знание помогает нам понять, как устроена и как развивалась наша собственная нервная система.


Запомните: складки и впадины



Информация обрабатывается во внешнем слое головного мозга – коре больших полушарий. У некоторых животных, в частности у птиц и пресмыкающихся, эта внешняя поверхность относительно гладкая, да и размер самого мозга не особенно велик. У млекопитающих он гораздо больше и снабжен расщелинами, ложбинами и впадинами, что существенно увеличивает площадь его поверхности. Большие полушария мозга (большой мозг) отлично развиты у собак и кошек: они составляют бо?льшую часть всего головного мозга и имеют несколько глубоких складок. У обезьян полушария еще больше, чем у кошек (относительно всего мозга); складок и впадин там тоже значительно больше. У человекообразных обезьян их еще больше. Что до людей, то у них большой мозг довлеет над всем прочим мозговым веществом, а его поверхность буквально испещрена извилинами, причем некоторые его части невозможно разглядеть со стороны, поскольку они расположены прямо под ней и теряются в ее складках. Это прекрасно сочетается с нашими представлениями о том, что люди – гораздо более разумные существа, чем другие животные, если не считать китов и дельфинов, поверхность мозга которых испещрена еще бо?льшим количеством складок и впадин, чем у людей. Как это расценивать? Значит ли это, что они разумнее нас? Никто этого не знает, за исключением, возможно, самих китообразных, но они пока ничего не говорят по этому поводу.





Большой мозг


Наконец, поднимаясь снизу вверх от нижнего края мозга к верхнему (или двигаясь вдоль линии эволюционной прогрессии), мы добираемся до большого мозга. У всех млекопитающих, особенно у людей, это самая большая из всех структур (и у китообразных тоже, хотя мы до сих пор не знаем, зачем китам и дельфинам такой массивный мозг и как они его используют). У людей, безусловно, это самая важная часть от всего объема мозга, и бо?льшая часть книги посвящена различным аспектам его функционирования.

Ну а теперь давайте рассмотрим его базисную структуру: оно стоит того, ибо мы научимся ориентироваться среди его различных зон, областей и секций.






Рисунок 1.4. Полушария головного мозга



Та часть головного мозга, которую мы называем большим мозгом, – очень важный атрибут нас самих, ибо именно он делает нас людьми. Именно эта часть мозга отвечает за такие функции, как мышление, восприятие, речь, воображение и планирование, принятие решений, социализация и все прочие аспекты когнитивного и социального познания, которыми мы пользуемся чисто автоматически, даже не сознавая этого. Неудивительно, что именно эта структура преобладает над всеми другими и затмевает их, хотя и не отделена от остальных структур поверхность большого мозга сформирована из того же серого вещества и состоит из клеточных тел – нейронов и прочих клеток, которые эти структуры питают и поддерживают. Но под слоем серого вещества находится компактная масса белого вещества, состоящего из длинных волокон, или аксонов, связывающих нейроны с другими частями как большого мозга, так и головного мозга в целом. Наш мозг пронизан сетью нервных волокон, соединяющих между собой различные его части, и эта книга рассказывает о том, что именно удалось обнаружить нейрофизиологам, нейропсихологам и прочим специалистам в области изучения работы мозга с точки зрения организации этой сети и ее функциональной деятельности.

Большой мозг делится на две половины – почти так же, как огромный грецкий орех. Эти половины, соответственно левая и правая, называются мозговыми полушариями. Будучи в целом разделенными, они имеют перемычку – толстую связку, называемую мозолистым телом. Мозолистое тело – это масса нервных волокон, передающая послания с одной стороны мозга на другую с целью координации наших действий и познаний. Это крайне важно, поскольку две половинки мозга хотя и действуют заодно, но выполняют немного разные функции. Если говорить в целом, то левое полушарие контролирует правую сторону тела, тогда как правое – левую его сторону. Есть и другие различия между ними (хотя их не так много, как принято считать), но их мы рассмотрим в следующей главе.

Структурно, т. е. по физическому строению, эти два полушария мозга совершенно идентичны, поэтому названия различных зон и участков левого полушария абсолютно те же, что у правого. Поверхность мозга, как мы уже знаем, покрыта глубокими впадинами и ложбинами с бугристыми округлыми зонами между ними. Эти ложбины и выпуклости имеют свои наименования: ложбину принято именовать бороздой (sulcus), а выпуклость между ложбинами – извилиной (gyrus). Большая глубокая ложбина, разделяющая две полвины головного мозга, называется медиальной бороздой. И хотя медиальная борозда отделяет левое полушарие мозга от правого, она, однако, не разделяет их полностью: как говорилось выше, они соединены между собой мозолистым телом, но эта перемычка расположена так глубоко, что увидеть ее сверху просто невозможно.

В каждом полушарии имеются две особенно длинные и глубокие борозды. Они делят полушарие на четыре доли. Латеральная (боковая) борозда, также называемая сильвиевой щелью, тянется вдоль каждой из сторон мозга. Область, находящаяся непосредственно под ней, называется височной долей. У нее множество функций (о них мы тоже расскажем в этой книге), но самая основная и четко различимая – восприятие и обработка воспринятых звуков. Другая главная борозда – центральная; она так и называется центральной бороздой, поскольку пересекает верхнюю часть мозга, отделяя переднюю (фронтальную) часть мозга, называемую лобной долей, от задней его части, называемой теменной долей. Лобная доля отвечает за такие функции, как принятие решений, планирование и движение, тогда как теменная доля ведает различными видами сенсорной информации. Четвертая доля мозга, затылочная, не имеет борозды, в отличие от трех других; эта область, как следует из названия, располагается в затылочной части мозга и управляет такой функцией, как зрение.

Однако наиболее интересные части большого мозга скрыты непосредственно под долями, где они и таятся, компактно свернутые. Например, под большим мозгом, являясь в то же время его частью, находится тонкий, но очень широкий слой клеток, которые связывают воедино многие различные области коры головного мозга и соединяют их с многочисленными структурами лимбической системы. Этот слой называется клауструмом (от лат. claustrum – «ограда»), и многие исследователи считают, что он крайне важен для нашего сознания и всего переживаемого нами в виде связного сознания (мы вернемся к нему в главе 13 и рассмотрим более подробно).






Рисунок 1.5. Кортикальные доли и борозды



Кроме клауструма есть еще островок (insula) – складчатая зона коры головного мозга, находящаяся внутри латеральной борозды. Она тоже отвечает за сознание, в частности за социальные восприятия, такие как эмпатия, сочувствие, сострадание, самосознание и эмоциональные переживания. Более того, островок неразрывно связан с нашими контролирующими системами – системой движения и системой познания, т. е. с мышлением и памятью.

Таким образом, мозг – очень сложная структура, и изучение того, как он работает и как связаны между собой его различные подразделения, является одним из самых интересных аспектов современной науки. Поскольку в области нейробиологии постоянно совершаются новые открытия, в этой книге невозможно осветить их все, однако, как я надеюсь, они приведены здесь в достаточном количестве, чтобы дать вам представление о том, что где находится и как мозг делает нас теми людьми, которыми мы являемся.


Фокусные точки

1. Мозг начинается как продолжение простой позвонковой трубки, связывающей воедино примитивную нервную систему. По мере развития и эволюции животных он все более и более усложнялся.

2. Части мозга, непосредственно связанные с позвоночником, обеспечивают наиболее важные для поддержания жизни процессы: дыхание, сердцебиение, пищеварение и бдительность.

3. Более обширные подкорковые структуры – это таламус и мозжечок. Таламус координирует сенсорную информацию, а мозжечок – движение.

4. Лимбическая система – это совокупность небольших структур, в которую входят миндалевидная железа (миндалина), гиппокамп и базальные ядра, отвечающие за наши эмоции, память и обучение.

5. Большой мозг – самая крупная часть головного мозга человека; он делится на две половины, превалирующие над всеми другими частями мозга, а его поверхность покрыта многочисленными морщинами и складками, что существенно увеличивает ее площадь.


Следующий этап

В следующей главе мы более подробно рассмотрим, как функционируют различные части мозга и что дает нам его изучение и сканирование.




Глава 2. Как работает мозг



Из этой главы вы узнаете:

? как с помощью химических веществ и электричества клетки мозга взаимодействуют между собой;

? как мы обучаемся и какова природа нейропластичности;

? что такое латерализация мозга;

? что показывает изучение мозга;

? что дает сканирование мозга.




Клетки мозга


В главе 1 мы рассмотрели в общем и целом, какими функциями заведуют различные части мозга. В этой же главе мы рассмотрим, как эти различные части передают друг другу послания и сообщения, комбинируя свои действия таким образом, что в результате получаемся мы, т. е. живые, наделенные дыханием человеческие существа. Путем комбинации химических веществ и с помощью электричества различные части мозга общаются с телом и между собой, поэтому нам представляется вполне разумным начать эту тему с рассмотрения клеток, входящих в состав мозга.

В предыдущей главе мы говорили о том, что поверхность мозга скомпонована из серого вещества, под которым находится масса белого вещества. Белое вещество состоит из нервных волокон, передающих сообщения из одной области мозга в другую; именно так все части и взаимодействуют между собой. Нервные волокна – волокна белого цвета, поскольку они миелинизированы (см. ниже).

Бо?льшая часть клеток, составляющих серое вещество, – это интернейроны, т. е. промежуточные, или, как их иногда называют, соединительные, нейроны. Основная их цель – соединять между собой нервные клетки, так что по своей структуре они относительно просты. Интернейрон состоит из клеточного тела, снабженного многочисленными отростками, которые, вытягиваясь вовне, образуют разветвления, или дендриты. Сам длинный «стебель», тянущийся от клеточного тела, обычно называют аксоном, а дендриты – это ответвления на его конце. Каждый дендрит заканчивается небольшим наростом, называемым синаптической шишкой, которая обеспечивает связь с другим нейроном.

В нервной системе имеются и другие типы нейронов, в частности сенсорные и моторные. Цель сенсорных нейронов – подхватить сигналы, воспринятые сенсорными рецепторами (глазами, кожей, носом, ушами и т. д.), и передать их дальше, мозгу. На конце этих нейронов имеются специальные рецепторные участки, которые передают эти сигналы клеточному телу. Отсюда послание по аксону поступает в соответствующие части мозга. Другие нейроны, моторные, воспринимают послание от мозга и передают его мышцам, вызывая их сокращение. На рисунке 2.1 приведена общая структура интернейрона, однако не стоит забывать о том, что все нейроны заканчиваются дендритами, снабженными на конце синаптическими шишками.






Рисунок 2.1. Интернейрон



Помимо нейронов в мозге имеется множество других клеток, называемых глиальными клетками, или глиоцитами. Их основная функция – удерживать нейроны на месте и подпитывать их кислородом и питательными веществами. Кроме того, они устраняют мертвую нервную ткань, выводят токсичные субстанции, помогают изолировать нейроны один от другого и играют важную роль в стимуляции роста клеток. Таким образом, мозг представляет собой плотно сбитую, неделимую клеточную массу, хотя, как было показано в главе 1, в ней наличествуют вполне различимые отдельные структуры. Однако есть в мозге и большие пространства – заполненные жидкостью участки, называемые желудочками (вентрикулами). Они расположены внутри мозга, но связаны со спинным каналом – остатком прежней нервной трубки. Желудочки заполнены прозрачной спинномозговой жидкостью, чье назначение – доставлять мозгу питательные вещества, обеспечивать иммунную защиту и выводить из него продукты жизнедеятельности. Желудочки могут действовать и как амортизаторы вроде воздушных подушек, защищая от ударов некоторые наиболее жизненно важные структуры мозга.




Химические вещества и электричество


Суть работы мозговых клеток сводится к тому, что они посредством химических веществ генерируют электричество. Как и у всех живых клеток, у них тоже есть электрическое поле, слегка отличающееся от электрического поля окружающих их клеток. Внутри мозговой клетки наблюдается несколько превышенная концентрация ионов калия с отрицательным электрическим зарядом. Обычно окружающая клетки мембрана препятствует проникновению в них других химических ионов, но если ее должным образом стимулировать, она меняет свою структуру и начинает пропускать ионы натрия. У ионов натрия положительный электрический заряд, и такой обмен положительными и отрицательными ионами вызывает в клетке неожиданный всплеск электричества. Этот неожиданный всплеск электричества мы называем электрическим импульсом. Электрические импульсы пронизывают ткань мозга, перемещаясь вдоль вытянутых «стеблей» (аксонов) нейронов. Иногда такое перемещение происходит относительно медленно, так как каждый импульс меняет очередную часть клеточной мембраны, деполяризуя ее за счет ионов натрия, обновляющих электрический импульс. Но это достаточно медленный и постепенный метод доставки информации. У нейронов, обеспечивающих быструю передачу, совершенно иная структура: их аксоны покрыты белым веществом, что способствует более высокой скорости передачи информации.

Белое вещество в таких клетках – это жировое покрытие, называемое миелиновой оболочкой. Она состоит из особых клеток, именуемых шванновскими. Шванновские клетки, или леммоциты, формируются вдоль аксонов и покрывают их миелиновой оболочкой, прерываясь крошечными щелями или зазорами в тех местах, где клеточная мембрана подвергается воздействию окружающей среды. Каждая шванновская клетка как бы изолирует аксон, препятствуя обмену положительно и отрицательно заряженных ионов. Следовательно, электрический импульс может обновляться лишь в местах зазоров между шванновскими клетками, поэтому и импульс распространяется вдоль аксона скачкообразно. Это значительно ускоряет передачу сообщения, и именно этой цели и служит белое вещество мозга. Оно состоит из миллиардов миелинизированных нервных волокон, гудящих подобно высоковольтным линиям и насыщенных электрическими импульсами, передающимися из одной части мозга в другую.






Рисунок 2.2. Шванновская клетка (леммоцит)



Именно так нейроны проводят и доставляют электрические сообщения. Но как эти сообщения передаются от одного нейрона другому? Чтобы ответить на этот вопрос, придется вернуться к упоминавшимся выше синаптическим шишкам. Синапс – это точка соединения двух нейронов, точнее говоря, зазор между двумя нейронами. Каждая синаптическая шишка соприкасается с рецепторным участком и через щель (синаптическое пространство) сообщается со следующим нейроном. В синаптических шишках имеются маленькие «кармашки», или везикулы, заполненные специальным химическим веществом – так называемым нейротрансмиттером (он же нейромедиатор). Когда электрический импульс достигает синаптической шишки, везикулы открываются и впрыскивают в синаптическое пространство нейротрансмиттер, который воспринимается рецепторным участком дендрита следующего нейрона, меняя электрическую полярность нервной мембраны. Везикулы каждого нейрона всегда содержат один и тот же нейротрансмиттер, но в нервной системе используется множество различных трансмиттерных веществ (действие некоторых из них мы рассмотрим в главе 13, когда коснемся такой темы, как психоактивные препараты и их воздействие на сознание человека).






Рисунок 2.3. Синапс



Воздействия химических веществ от одного синапса недостаточно для того, чтобы вызвать реакцию другого нейрона. Но если задействуется достаточное количество синапсов, их совокупное действие меняет клеточную мембрану следующего нейрона. Некоторые синапсы повышают вероятность активации следующей клетки, поэтому их так и называют – возбуждающие синапсы, поскольку они возбуждают и стимулируют нейрон. Но есть и другие синапсы – тормозные; как следует из названия, они не способствуют активации нейрона, а тормозят ее, т. е. препятствуют передаче информации. Эта комбинация возбуждающих и тормозных синапсов создает в мозге особые пути, которые проводят импульсы к одним областям мозга и отводят их от других.




Обучение и нейропластичность


Большой мозг – да и вообще весь человеческий мозг – пронизывают нервные проводящие пути, осуществляющие переброску электрических импульсов из одной области мозга в другую. Эти пути отчасти присутствуют у нас с рождения, а отчасти формируются в процессе накопления жизненного опыта. Сразу после рождения младенца связей между нейронами в его мозге гораздо больше, чем в любой другой период его жизни: в этот момент практически каждый вероятный синапс «оживает». Но в течение первых трех лет жизни количество этих связей сокращается: используемые связи укрепляются, а неиспользуемые – отмирают. Несмотря на это, в нашем распоряжении по-прежнему остаются миллиарды синаптических связей, т. е. сокращение числа связей совершается постепенно, а не резко. Почему это происходит? Все это непосредственно связано с нашим умением адаптироваться к окружающей среде: в какой мере мы как вид этим умением обладаем. Действительно, людям (или, по крайней мере, человеческим обществам) приходится существовать в самых разных природных условиях и средах – начиная с арктических зон вечной мерзлоты и заканчивая иссушающими пустынями и влажными джунглями; впрочем, и среднеконтинентальный климат ничем не лучше, ибо температура в некоторых регионах материка в течение года может колебаться от +40 до -40 °C. И во всех этих условиях и средах мы способны выжить, хотя навыки, способствующие такому выживанию, весьма различны. Но мы выживаем не потому, что адаптируемся к этим условиям физически, а потому, что учимся этому. С момента рождения – и даже еще до рождения – ребенок учится жить в этом мире. Сразу после рождения он в основном ориентирован на то, чтобы учиться этому у других людей, и это обучение может принимать различные формы. К трем годам ребенок, как правило, прочно усваивает все необходимые навыки и прекрасно ладит с миром. А вот научиться ладить с социумом – процесс куда более сложный!

Люди наделены невероятной способностью к обучению, и именно для этого им и дарован мозг. Процесс обучения начинается с того самого момента, когда одни синапсы в клетках мозга усиливаются, а другие ослабляются, и передаваемые по неведомым путям нервные импульсы оказывают должное действие. Клетки нашего мозга реагируют на новое обучение и налагаемые им требования двояко. Во-первых, за счет формирования синапса – или по меньшей мере за счет усиления потенциала синаптической шишки и развития связанного с ней рецепторного участка, – вследствие чего выделяется и включается в оборот больше трансмиттеров, делая сообщение более сильным и устойчивым. Во-вторых, за счет миелинизации. Нейрон, активированный чисто случайно, обычно лишен миелиновой оболочки, поскольку не способен ее сформировать, но зато активные нейроны притягивают к себе шванновские клетки. Таким образом, если непрерывно стимулировать группу таких клеток, что обычно и происходит в процессе обучения чему-то новому, аксоны начинают обрастать шванновскими клетками. Как известно, миелинизация помогает более быстрому прохождению сообщения по нейрону, поэтому и то, чему мы учимся, запоминается легче, да и навык закрепляется быстрее.

Быстрее всего процесс обучения происходит в детские и отроческие годы, хотя, если говорить по существу, учиться мы продолжаем всю свою жизнь. Другими словами, мы постоянно предъявляем требования клеткам нашего мозга, побуждая их формировать новые связи. Мы, например, не рождаемся с умением читать; и эта способность не из тех, которые мы развили. В большинстве человеческих культур умение читать, если чтение вообще является элементом такой культуры, встречается крайне редко; это уникальный дар, присущий очень немногим индивидуумам. Однако все мы способны научиться читать. Хотя это требует изрядных усилий, терпения, усидчивости и продолжительных занятий с печатным словом. Большинство людей к тому времени, когда им исполняется 10–12 лет, уже могут читать, причем бегло. Правда, некоторым для этого требуется значительно больше времени, но здесь уже все зависит от жизненных обстоятельств, опыта и мотивации приложить необходимые усилия.

Кора головного мозга состоит из многочисленных групп нейронов, называемых ядрами. Когда мы учимся читать, определенные ядра мозга возбуждаются и начинают создавать новые связи. Вполне может быть и так, что некоторые из этих ядер, будучи уже достаточно развитыми, изначально оказываются восприимчивыми к тем знакам или символам, которыми полнится сама природа, и потому предупреждают нас, например, что красный цвет – знак опасности, поскольку это цвет крови. Но как бы ни были они развиты, при наличии должного опыта и должного обучения эти ядра столь же успешно адаптируются к адекватному восприятию и других природных символов. Если постоянно заниматься, нарабатывая привычку к письменному или печатному слову – и, что самое важное, к заключенному в нем смыслу, – то ядра постепенно адаптируются к нему, наделяя нас навыком беглого чтения. Чем чаще мы обращаемся к печатному слову, чем больше читаем, тем более активно развивается эта группа нейронов, пока наконец мы не получаем в свое распоряжение особую зону мозга, адаптированную к расшифровке печатных слов.

То же происходит по всему мозгу, когда мы учимся соответствовать требованиям, налагаемым на нас средой, окружением и опытом. Нередко случается так, что определенные зоны мозга развиваются особым образом, поскольку ядра предрасположены иметь дело с определенной информацией. Многие из них сформировались еще в ходе эволюции, вот почему подобные зоны мы часто находим в мозге млекопитающих. Но как бы далеко мы ни зашли в этом направлении и какими бы сложными ни были наши навыки и умения, все это непосредственно связано с нашей чисто человеческой способностью учиться. Эволюция требовала от нас, чтобы мы обучались новым навыкам, дающим нам умение приспосабливаться к вечно меняющейся внешней среде, поэтому мы и развили такие структуры мозга, которые наделяют нас этим умением.

Способность клеток мозга адаптироваться к внешней среде и внешним условиям называется нейропластичностью, и она сопровождает нас всю нашу жизнь. Раньше считалось, что мозг полностью адаптируется к внешней среде только к возрасту полового созревания и что после этого функции клеток нашего мозга в значительной степени закрепляются и остаются неизменными. Теперь же мы знаем, что это не так. Да, получив повреждение мозга, дети восстанавливаются гораздо быстрее, чем взрослые, и в некоторых случаях поврежденные участки мозга у них отрастают заново. Но взрослые, в отличие от детей, могут восстанавливаться от самых различных типов повреждений в самом широком спектре, перестраивая нервные импульсы так, что они формируют новые проводящие пути. Мы также знаем, что нейроны могут расти и развиваться в течение всей жизни до тех пор, пока они воспринимают умственные или физические нагрузки, необходимые для стимуляции их роста.


Случай из практики: история Ноя Уолла



Процесс роста нейронов прекрасно иллюстрируется историей Ноя Уолла – «мальчика, отрастившего мозг». У Ноя были врожденное расщепление позвоночника (спина бифида) и гидроцефалия (водянка головного мозга), так что места для собственно мозговой ткани оставалось очень мало. Больших полушарий мозга при рождении у него практически не было: внутричерепное пространство было заполнено цереброспинальной жидкостью, оказывавшей на неразвитый мозг существенное давление. Большинство младенцев в подобных обстоятельствах не выживают, но Ною очень повезло с родителями: это были очень любящие и решительные люди, которые в часы бодрствования всячески его стимулировали и занимались с ним различными видами активной деятельности. От давления жидкости удалось избавиться с помощью хирургического вмешательства, и, хотя с рождения мозг Ноя был очень маленьким, мозговая ткань, откликаясь на внешние нагрузки и активную среду, начала расти, и в конце концов у него сформировались большие полушария. К пяти годам они выросли почти до нормального размера, так что Ной во всех отношениях был абсолютно нормальным маленьким мальчиком.


Человеческий мозг тоже сохраняет способность адаптироваться к новым физическим условиям. Наблюдения за организмом астронавтов показали, что длительное нахождение в условиях невесомости способно привести к структурным изменениям в мозге. Согласно отчету, составленному командой исследователей под руководством В. Коппельманса (2016), для сравнения были взяты результаты магнитно-резонансной томографии (МРТ) мозга членов экипажа «Спейс шаттл» и астронавтов с Международной космической станции, сделанной перед отправлением в космос и после их возвращения. Оказалось, что в мозге астронавтов наросло большое количество серого вещества вокруг зон, которые отвечают за движения нижних конечностей. Чем больше времени они провели в космосе, тем более очевиден был этот образчик нейропластичности. Нижние конечности особо важны для передвижения по земле, в условиях земного тяготения, и менее важны в космосе, в условиях невесомости, поэтому исследователи пришли к разумному заключению, что нервные изменения обусловлены результатом работы головного мозга, пытавшегося приспособиться к новым условиям окружающей среды. Сходный, хотя и не совсем идентичный результат был получен при сравнении мозга здоровых людей с мозгом пациентов, которым был показан длительный постельный режим.

Другие исследования наглядно продемонстрировали, как мозг способен восстанавливаться после повреждения, полученного в результате сильного удара по голове, когда нарушается кровоснабжение того или иного участка мозга. Отсутствие кислорода приводит к гибели важнейших нервных клеток, в результате чего нарушаются такие функции, как движение или речь. Из медицинской практики нам известно, что организм человека способен восстановиться после столь серьезной травмы, и часто такие пациенты почти полностью возвращают себе эти функции, но для этого необходимо приложить немало усилий, если только они на это способны. Нервные клетки мозга реагируют на эти усилия тем, что полностью перестраиваются, минуя поврежденные участки и прокладывая новые проводящие пути в стремлении выполнить то действие или восстановить ту способность, которые требуются телу.

Даже люди, полностью лишившиеся целых участков мозга, могут иногда восстанавливать утраченные функции. В главе 10 мы рассмотрим те зоны и участки мозга, которые отвечают за речевую функцию и которые в большинстве своем (хотя далеко не всегда) находятся в левом полушарии. Повреждения, нанесенные этим участкам левого полушария, могут серьезно нарушить речевую способность человека – умение разговаривать или произносить слова или даже понимать их смысл. Но интересен следующий факт: в 1980 году Гуч привел отчет о наглядных результатах одной операции. Несколько пациентов были доставлены в больницу с такими серьезными повреждениями левого полушария мозга, что хирурги решили полностью удалить эту половину. До операции пациенты совершенно не владели речью, однако после того, как поврежденное полушарие было удалено, утраченная функция начинала восстанавливаться: люди снова начинали говорить, понимать и даже вспоминать слова старых песен. Языковые/речевые функции, прежде возложенные на левое полушарие, теперь брала на себя правая сторона их мозга. Прежде о таком уровне нейропластичности мозга никто даже не подозревал, и этот пример лишний раз доказывает, сколь ошибочно создавать упрощенные модели работы мозга. Она всегда гораздо сложнее, чем кажется поначалу!




Латерализация мозга


Отчет Гуча опроверг представление о том, что речевая способность сосредоточена только в левом полушарии, и показал, сколь пластичны полушария нашего мозга и какой сильной адаптивной способностью они наделены. Общее правило гласит, что нашему мозгу присуща определенная латерализация: одна сторона мозга отвечает за одни функции, а вторая – за другие. Например, левая сторона головного мозга контролирует правую сторону тела, а правая сторона мозга – левую сторону тела. Так, приказ выполнить то или иное действие, отданный правой стороной мозга руке, приведет в движение вашу левую руку, и наоборот.

Исключениями из этого правила являются лишь органы зрения и слуха, расположенные на голове: глаза и уши имеют взаимные точки пересечения, так что информация, поступающая от каждого глаза или уха, воспринимается обеими сторонами мозга. Для человека это жизненно важно, поскольку умение уловить разницу в звуках, воспринимаемых каждым ухом, позволяет нам узнать, с какой стороны находится источник этого звука. То же и с глазами: наличие перекрестного обзора означает, что информация, воспринимаемая левосторонней частью глаза от источника, находящегося в правой области его поля обзора, поступает в левое полушарие мозга, а информация, воспринимаемая правосторонней частью глаза, поступает в правое полушарие. Поэтому каждый глаз способен обозревать все визуальное поле, а мозг, кроме того, может сравнивать между собой два образа.

Исследователи сумели воспользоваться этой особенностью восприятия, для того чтобы изучить, как функционируют разные части мозга. С помощью экрана, заслонявшего одну сторону визуального поля, им удалось выяснить, что именно левая сторона мозга понимает (читает) письменные указания, тогда как правая сторона обычно читать не может, но зато может понимать другие обозначения. Здесь также налицо пересечение: если бы вы, например, написали слово «ключ» и предъявили его правой стороне мозга человека, дав его прочесть, то человек не смог бы сказать, что означают эти написанные буквы, но зато среди различных предметов, разложенных перед ним, он взял бы именно ключ, а не что-то другое. Таким образом, эта сторона мозга тоже способна улавливать некоторый смысл, хотя навыками чтения она не владеет.

Большинство людей предпочитают пользоваться одной из рук чаще, чем другой, а спортсмены знают, что то же самое можно сказать и о ногах: действительно, одной мы предпочитаем пользоваться чаще, чем другой, и не обязательно эти рука и нога будут совпадать. Большинство людей – правши, но многие – левши; у правшей обычно более развито левое полушарие мозга, зато у левшей полушария сбалансированы и равно активны как левая сторона мозга, так и правая. Они также выказывают больше вариативности в том, какое именно полушарие заведует основной речевой функцией – правое, левое или, как у некоторых людей, речевая деятельность одинаково распределена между ними. У правшей, как правило, речевой функцией заведует левое полушарие. Но никто еще не доказал, что существует некая связь между доминантным полушарием и познавательной способностью: какую бы сторону мозга вы ни использовали чаще, потенциал ваших способностей и навыков одинаков.


Ключевая идея



Кто вы: правша, левша или одинаково свободно владеете обеими руками? Большинство людей считают себя правшами, поскольку они пишут правой рукой, однако в действительности четверть из них – люди смешанного типа: они могут пользоваться правой рукой при выполнении сложных заданий, а для выполнения более простых функций пользуются левой. Все зависит от того, какую руку мы считаем рабочей и какими критериями при этом руководствуемся. Точно так же опрос населения с целью выяснения, сколько человек считают себя левшами, показал, что эта оценка колеблется от 4 до 30 % в зависимости от того, какие критерии мы предъявляем к левшам и насколько жестки эти критерии.


О правом и левом полушариях мозга ходит большое число расхожих мифов. Говорят, например, что правое полушарие в большей степени, чем левое, отвечает за творческий процесс, тогда как левое больше управляет аналитическими способностями; или что правое полушарие более склонно к мистике, тогда как левое более тяготеет к материализму. Все это по большому счету чепуха, типичное преувеличение куда более точных данных, полученных на основе научных наблюдений. Эти научные наблюдения показывают, что решение пространственных задач вроде вычерчивания графиков и диаграмм больше берет на себя правое полушарие мозга, тогда как арифметические задачи вроде сложения или подсчета в основном решаются левым полушарием.

Эти наблюдения, которые в любом случае лишь обозначают некую тенденцию, но при этом являются довольно общими и не могут быть приложимы ко всем и каждому, привели к общераспространенному мифу, который можно выразить примерно так: а) пространственное мышление = рисование = искусство = артистическая личность = творчество; б) арифметика = числа = вычисление = практичная личность = материализм.



Но эти выводы пока бездоказательны; в сущности, известно, что творчество, если оно опирается на навыки, воспоминания, способности и воображение, задействует оба полушария мозга. Точно так же и математики в процессе решения задач используют как правое, так и левое полушарие мозга. Поскольку мы говорим о латерализации функций мозга, важно помнить, что обе половины в целом дополняют друг друга. Они не противостоят друг другу, а работают согласованно, давая нам необходимый жизненный опыт. Одна сторона мозга может анализировать значение слов, тогда как другая в это время анализирует нюансы их произношения, тон, с которым они были произнесены, и время их произнесения – и вместе обе стороны дают нам возможность понять, о чем нам говорят.

Нельзя не упомянуть и об исследованиях, проведенных при работе с пациентами, у которых отсекли пучок волокон, называемый мозолистым телом, в попытке избавить их от тяжелой формы эпилепсии, которая начинается в одном полушарии, а затем распространяется по всему мозгу. Когда этих людей протестировали, оказалось, что обе половины их мозга могут действовать самостоятельно и что каждая наделена некоторыми из тех способностей, которые обычно закреплены за другой. Языковые функции, например, отводятся левому полушарию, но правое тоже наделено способностью читать простые слова. Точно так же считается, что правое полушарие лучше обрабатывает образы и картины, но и левое в известной мере тоже обладает этой способностью. Однако особый интерес представляют описания, данные некоторыми из этих людей. Одна женщина, например, описала, как ее левая рука достала из шкафа платье, которое она и не думала надевать и даже не помышляла о таком выборе, а, напротив, собиралась достать совершенно другое.




Изучение мозга



Исследования состояния расщепленного мозга проводились в 1960-х годах, и они являются прекрасной иллюстрацией того, сколь ограниченными были такие исследования в то время. Исследователи в основном полагались на результаты хирургических операций, опыты на животных и изучение мозга умерших людей. Поскольку мозг упакован в твердый короб (череп), мы не можем заглянуть внутрь (не прибегая к хирургическим методам), пока человек жив и его мозг функционирует, и даже если бы могли, то мало что увидели бы: клетки мозга работают на химико-электрическом уровне, а наличие электричества можно обнаружить только при помощи специальных приборов. Ученые, желавшие узнать, как работает мозг, должны были либо проводить внешние его измерения, либо изучать людей, получивших серьезные повреждения головного мозга или отдельных его частей.

Как же устроен мозг и как он работает? Человечеству на протяжении веков интересно было узнать это, но даже отсутствие возможности проводить эффективные исследования не останавливало людей, и они высказывали на этот счет различные теории. В XVIII и XIX веках царило всеобщее убеждение, что высокий уровень развития умственных способностей ведет к развитию отвечающих за эти способности частей мозга; что мозг в процессе роста наталкивается на стенки черепа и начинает давить на них, в результате чего на голове образуются шишки, хорошо прощупываемые снаружи. Так возникла френология – теория, многие десятилетия пользовавшаяся огромной популярностью. Хотя со временем она стала «наукой, которая покоится на прочном основании», как считают ее приверженцы, до сих пор нет никаких реальных доказательств ее истинности, поэтому постепенно она как наука сошла на нет.




Измерения электрической активности


Есть, однако, и другие способы измерения активности мозга извне, и самый распространенный из них (он возник, когда ученые поняли, что деятельность нервных клеток осуществляется в сфере электричества) – это электроэнцефалограмма (ЭЭГ), т. е. определение общей электрической активности мозга. Она измеряется путем считывания напряженности электрического поля в различных точках черепной коробки, и это считывание говорит нам о многом (в частности, в главе 13 мы расскажем о том, как психологи с помощью ЭЭГ определяют фазы сна человека и как на основании общих закономерностей деятельности мозга они устанавливают степень сознательности мысленных состояний).






Рисунок 2.4. ЭЭГ мозга



С помощью ЭЭГ выявляли также, что происходит в мозге пациента, подверженного эпилептическим припадкам, которые (так уж повелось испокон веков) рассматривались как нечто мистическое, иррациональное, не поддающееся объяснению. ЭЭГ ясно показала, например, что эпилептический припадок обычно начинается в височной доле левой стороны мозга и оттуда распространяется по всему мозгу, что и являлось причиной проведения операций по рассечению мозолистого тела, о которых упоминалось выше. Суть операции состояла в том, чтобы путем рассечения мозолистого тела ограничить электрическую активность одной стороны мозга, давая возможность другой действовать нормально, причем эта процедура применялась только при очень серьезных припадках. С помощью ЭЭГ удалось установить также, что существует множество различных уровней эпилепсии, и хотя некоторые из них едва заметны для наблюдателя, они тем не менее влияют на самого эпилептика.

По мере того как электрический мониторинг становился все более эффективным, возникали новые техники. Одна из них – это вызванный потенциал, измерение, показывающее, как та или иная область мозга реагирует на электрическую стимуляцию. Она, в частности, помогла нейрохирургам выявить некоторые основные проводящие пути и связи в мозге. В других техниках используются микроэлектроды, которые настолько малы, что могут управлять отдельным нейроном или стимулировать его. В ключевых исследованиях, в ходе которых было установлено, как отвечающие за зрение участки коры головного мозга дешифруют формы и образы, использовался именно этот метод. В конце концов открытия, сделанные за годы кропотливых микроскопических исследований, привели к тому, что два исследователя, работавших в этой области, – Дэвид Хьюбел и Торстен Визель – получили Нобелевскую премию (об этих открытиях мы расскажем подробнее в главе 3).

Хьюбел и Визель приступили к своим исследованиям в начале 1960-х годов, и за это десятилетие был сделан еще один важный шаг в понимании того, как работает мозг, ибо именно в этот период были выделены специфические нейротрансмиттеры (они же нейромедиаторы). Как мы уже знаем, электрическая активность мозга возникает под действием химических веществ при передаче сообщения от одной нервной клетки, или нейрона, другой. Открытие того, какие именно сообщения несли в себе некоторые из этих веществ, позволило ученым обнаружить и проследить в мозге нейрохимические пути. Из следующих глав мы узнаем, насколько большую роль это открытие сыграло для понимания, как именно работает мозг. Многие исследования проводились на животных, поскольку изучение мозга людей сводилось лишь к внешним наблюдениям, о которых мы говорили выше, или к изучению клинических пациентов, у которых был травмирован мозг. Практикующие врачи (клиницисты), отмечая те зоны мозга, которые были травмированы, пытались соотнести их с конечными психологическими сдвигами или переменами в личности человека. Иногда такие результаты были вполне очевидными: например, Брока и Вернике (о них мы расскажем в главе 10) сумели идентифицировать ключевые области мозга, управляющие языковой/речевой функцией, еще в XIX веке, изучая людей со специфическими речевыми недочетами, вызванными травмой мозга, и соотнося эти симптомы с теми повреждениями конкретных участков мозга этих людей, которые были выявлены в ходе вскрытия черепа после их смерти.

Что касается изучения более точечных изменений в личности человека, вызванных повреждением мозга, то тут дело обстояло гораздо сложнее, главным образом из-за того, что сравнения приходилось делать чисто ретроспективно, т. е. сопоставляя, каким человек стал после получения травмы, с тем, каким он был раньше по его собственным словам. Проблема в данном случае заключается в том, что у всех нас много самых разных психических состояний, и какую-либо психическую или личностную характеристику можно легко увязать с несчастным случаем, тогда как эта характеристика наличествовала постоянно, пусть даже все это время оставалась незамеченной. Например, старики часто замечают, что их память дает сбой, хотя, как показывают наблюдения, молодые люди страдают провалами в памяти так же часто или даже еще чаще, чем пожилые. Разница лишь в том, что молодые люди не фокусируются на этом и не уделяют этому феномену особого внимания, тогда как пожилые подмечают его и беспокоятся каждый раз, как что-то забывают, ибо связывают забывчивость со старостью или старением, хотя на деле они страдали этим всю свою жизнь. То же происходит и в случае, когда человек получает травму мозга: мы словно по-новому глядим на себя и начинаем подмечать признаки, которые у нас были и раньше, но которые мы прежде у себя не замечали. В силу этого мы считаем, что это что-то новое, и связываем их с повреждением мозга. Это, конечно же, не значит, что травма мозга не оказывает на нас никакого действия; разумеется, оказывает, но очень трудно определить, в чем именно заключается это воздействие, поскольку мы не записываем и не фиксируем на бумаге каждый аспект нашей обычной жизнедеятельности.




Сканирование мозга


Настоящий прорыв в изучении мозга был сделан в 1980-х годах с изобретением такого метода, как сканирование. Сканирование впервые в истории дало возможность изучать живой мозг в активном, действующем состоянии. Отпала надобность изучать отклонения в поведении человека с травмированным мозгом или полагаться на исследования мозга животных; теперь мы можем наблюдать за нормальными, здоровыми людьми и видеть, как работает их мозг, и это существенно обогащает наше понимание происходящего. Нейровизуализация дает нам картину мозга, на которой видно, какие его части активны в любой период времени и какие реагируют на различные стимулы.

Существует несколько типов сканирования мозга. В одной группе сканов для демонстрации работы мозга используется взаимодействие электричества и магнетизма; наиболее практичными и эффективными из них считаются МРТ-сканы. В основе этого метода – тот факт, что у молекул воды в клетках мозга, когда они активны, магнитное поле немного отличается от того, когда они пребывают в состоянии покоя. Томограф создает последовательный ряд электромагнитных волн, немного напоминающих радиоволны, и фиксирует, как активные клетки мозга реагируют на них. Сканер принимает и записывает эти реакции, создавая на их основе графическое изображение активности, происходящей в мозге в данный момент.

Существуют разные способы МРТ-сканирования. Самый распространенный – это функциональная МРТ (фМРТ), при которой исследуется активность мозга в привязке к специфическим функциям. Например, поскольку процесс сканирования занимает считанные секунды, исследователи получают возможность наблюдать, что происходит в мозге, когда люди заняты активной мыслительной деятельностью: читают, предаются воспоминаниям или решают головоломку. Последовательный ряд сканов формирует картину, отражающую изменения мозговой активности во время выполнения поставленной задачи.

Другой подобный способ сканирования – это событийная функциональная МРТ (сфМРТ). При таком типе сканирования сравниваются образцы электрической активности мозга, вызванной двумя-тремя разными событиями: например, активность мозга, зафиксированная в случае, когда человек дает правильный ответ на вопрос во время тестирования памяти, сравнивается с активностью мозга, зафиксированной, когда он же дает неправильный ответ.

Другие виды сканирования – это позитронно-эмиссионная (ПЭТ) и компьютерная аксиальная томография (КАТ). В первом случае отслеживается распространение небольшого количества радиоактивного вещества, введенного в кровь и поглощенного мозгом. Активные клетки мозга нуждаются в большем количестве крови, чем пассивные, поскольку нейроны после активации пополняют запас питательных веществ, поэтому приток крови к определенным участкам мозга указывает как раз на более активные клетки. В классических исследованиях, например в исследовании Тульвинга (1989), изучавшего свойства и функции памяти у людей, вспоминавших эпизоды из своих отпусков, использовались радиоактивные изотопы золота. Изотопы золота быстро распадаются и не задерживаются надолго в кровеносной системе, зато с их помощью можно быстро выявить, какие зоны мозга активны в данный момент. Медики используют с этой целью более простые вещества и субстанции, но принцип остается неизменным.

Во втором случае применяется серия рентгеновских или ультразвуковых изображений, сделанных фрагментарно, и из этих фрагментов затем комбинируется трехмерное изображение. При этом сравниваются различные уровни плотности мозга. Серое вещество, например, менее плотное, чем белое, поэтому на компьютерной томограмме оно выглядит иначе; аналогично дело обстоит с опухолями и тромбами. Изображение статично, но оно дает исследователю возможность выявить аномальные структуры или наросты, а кроме того, сравнивая время от времени томограммы, можно обнаружить масштабные положительные изменения, например восстановление мозга после повреждения, полученного после сильного удара или серьезной травмы головы.

В некоторых случаях рекомендуется вначале сделать ЭЭГ как первое или предварительное сканирование мозга, которое показывает общий уровень активности в различных его частях. Для этого к определенным точкам на голове прикрепляются датчики, очень чувствительные к электрическим излучениям мозга, – электроды (современные исследователи, вместо того чтобы прикреплять их прямо к коже головы, как это делалось раньше, предпочитают использовать электродную сетку, которая накидывается на голову). Технологический прогресс привел к тому, что сегодня ЭЭГ дает куда более правдивую картину работы мозга, чем раньше. Что касается старых ЭЭГ, то это все равно что стоять на улице за стенами фабрики, стараясь по доносящемуся оттуда шуму определить, что именно там происходит. Тем не менее, даже несмотря на их несовершенство, с помощью ЭЭГ удалось выявить общие симптомы и закономерности деятельности мозга, например альфа-, бета- и дельта-волны, связанные с различными психическими состояниями: альфа-волны – с расслабленным состоянием, бета-волны – с состояниями бдительности и бодрствования, а дельта-волны – с состоянием глубокого сна (более подробно мы рассмотрим их в главе 13).

У этого метода сканирования множество вариаций, таких, например, как магнитоэнцефалография (МЭГ), при которой для определения изменений в магнитной деятельности мозга используются так называемые сверхпроводящие квантовые интерференционные датчики (СКВИД). Эти датчики невероятно чувствительны и способны обнаружить мельчайшие отклонения в магнитном поле вокруг мозга, так что их можно закреплять даже на коже головы над определенными его участками. Потенциал вызванной реакции (ПВР) – это метод измерения, с помощью которого можно выявить изменения электрической активности какой-либо области мозга, реагирующей на стимул, раздражитель или событие, активизирующие работу мозга. Раньше, как уже отмечалось выше, с этой целью применялась несколько иная методика, именуемая вызванным потенциалом, при которой в качестве стимула использовался звук, реакция мозга на который и фиксировалась соответствующим датчиком.

Транскраниальная магнитная стимуляция (ТМС) – особенно интересный способ изучения мозга. Он связан с передачей в мозг магнитной стимуляции в виде короткого магнитного импульса. Этот импульс вмешивается в работу мозга и на короткое время прерывает процесс, происходящий там в этот момент, но прерывает без каких-либо последствий. ТМС достаточно легко контролировать, поскольку эта стимуляция точечная и не охватывает весь мозг: датчики размещаются на голове лишь над определенным участком. Размещать их на боковой части головы, на височных долях или на стыке теменной и височной долей, не рекомендуется, поскольку это может привести, например, к серьезному (хотя и временному) нарушению речевой функции, что неблагоприятно повлияет на выполнение таких действий, как, скажем, чтение вслух или заучивание стихотворений наизусть. Транскраниальная стимуляция постоянным током (ТСПТ) – очень простой процесс: непосредственно к коже головы прикрепляется электрическая катушка, наносящая виртуальное повреждение, которое мешает нормальному функционированию мозга. Существует два вида ТСПТ – катодный (снижает уровень активности мозга, препятствуя выполнению задачи) и анодный (повышает уровень активности, способствуя выполнению конкретных задач).

Мозг таит в себе немало и других сюрпризов. Сканирование, в частности, показало обилие в нашем мозге так называемых зеркальных нейронов. Первые зеркальные нейроны обнаружили в двигательных системах; с их помощью удалось установить, что деятельность нашего мозга отражает не только наши собственные действия и поступки, но и действия и поступки других людей. Когда мы наблюдаем за действиями других людей, соответствующие части нашего мозга реагируют на них точно так же (т. е. с той же степенью активности), как и на наши собственные действия. Но это происходит, разумеется, только в том случае, если мы обращаем на это внимание: если мы, к примеру, следим за действиями канатоходца и представляем, каково это – балансировать на тонком канате на страшной высоте, некоторые наши клетки мозга, отвечающие за равновесие и ходьбу, тут же активизируются. Со времени первого открытия зеркальных систем они были обнаружены во многих частях мозга, в частности в тех, которые отвечают за функции социального взаимодействия: речь, разговор, память и т. д. Когда мы общаемся с другими людьми или наблюдаем за их действиями, наш мозг структурирует свою деятельность таким образом, что мы до известной степени солидаризуемся с ними и даже симпатизируем им. Мы гораздо социальнее, нежели думаем! Если вы найдете в себе силы продолжить чтение этой книги, то убедитесь, что по ходу повествования мы довольно часто будем сталкиваться с зеркальными нейронами.


Фокусные точки



1. Мозг состоит из нервных клеток, называемых нейронами, которые, будучи связанными между собой, шлют и передают сообщения всему мозгу и остальным частям тела.

2. Сообщения в мозге передаются в форме электрических импульсов от одного нейрона другому при помощи особых химических веществ, называемых нейротрансмиттерами (или нейромедиаторами).

3. Нервные связи развиваются по мере того, как мы обучаемся чему-то новому, так что мозг обладает способностью адаптации к повреждениям даже в зрелом возрасте. Это его свойство известно как нейропластичность.

4. Левая сторона мозга контролирует правую сторону тела, и наоборот. Некоторые другие функции тоже латеризованы, т. е. управляются одной стороной мозга или другой, но их не так много, как принято считать.

5. Раньше ученым при исследованиях мозга приходилось лишь иметь дело с пациентами, получившими травму мозга, изучать мозг животных или полагаться на ЭЭГ. Сегодня же сканирование мозга позволяет изучать его в процессе функциональной деятельности. Существуют самые различные виды сканирования, среди которых наиболее употребимыми являются ПЭТ, КАТ и МРТ.



Следующий этап



В первых двух главах мы обрисовали общую картину мозга: что он собой представляет и как работает. Со следующей главы мы начинаем специфическое изучение различных его частей и того, как благодаря их совокупной работе мы ощущаем себя людьми. А начнем мы с рассмотрения того, каким нам видится этот мир с точки зрения его зрительного восприятия.





Глава 3. Как мы распознаем то, что видим



Из этой главы вы узнаете:

? как работает зрительная система;

? что такое слепозрение;

? как мы видим и различаем предметы;

? как мы распознаем движение;

? как мы различаем других людей.



Наше зрение – это что-то удивительное: мы можем видеть и различать предметы как на расстоянии, так и вблизи; как многоцветные, так и одноцветные; как движущиеся, так и неподвижные; как в полутьме, так и при ярком свете. Хотя некоторые животные обладают более острым зрением в более широком диапазоне электромагнитного спектра, чем мы, тем не менее наша зрительная система дает нам богатейшую информацию об окружающем мире и является практически идеальной для таких легкоприспосабливающихся социальных существ, как мы. Вот почему зрение – самый важный наш орган чувств из всех; настолько важный, что в стремлении помочь людям с ограниченной способностью видеть или полностью незрячим мы даже изобрели различные, подчас весьма сложные методы преодоления этой особенности организма, но при этом совершенно не уделяем внимания людям с ограниченным обонянием, с трудом или нечетко различающим запахи. Это как раз свидетельствует о том, что зрение мы ставим превыше всего.

Как же работает зрение? Оно базируется, разумеется, на восприятии света, ибо только свет дает нашим глазам всю необходимую информацию. Мозг, как мы уже знаем, работает за счет электрических импульсов, поэтому мы выработали ряд сложных структур для перевода световой информации в электрическую. Начало всему – наши глаза, которые организованы таким образом, чтобы воспринимать свет (точнее, фотоны) и проецировать его на сетчатую оболочку глаза – сетчатку, – представляющую собой слой клеток на задней стороне глазного яблока. В этих клетках наличествуют химические вещества, которые, реагируя на свет, генерируют электрические импульсы. Эти импульсы затем передаются от одной нервной клетки другой и большинство из них в конце концов попадают в затылочную часть мозга, которую мы называем зрительной корой. Зрительная кора – это довольно обширная область головного мозга, являющаяся основой нашего сознательного визуального опыта. Однако на этом пути информационный материал подвергается всесторонней сортировке.






Рисунок 3.1. Зрительные зоны головного мозга




Зрение и слепозрение


Визуальная информация от глаз до мозга может идти несколькими путями, и многие из них с точки зрения эволюции очень древние. Развивая более сложные системы, мы сохранили те, которыми обладали ранее, а поскольку люди – высокоразвитые существа, то мы выработали не один, а несколько различных способов, с помощью которых световая информация воздействует на наш мозг. Иногда это приводит к интересным последствиям.

Вам когда-нибудь приходилось заниматься чем-то интересным и в минуту наиболее глубокой увлеченности делом вдруг насторожиться? Что-то случилось во внешней среде и привлекло ваше внимание, но только гораздо позже вы понимаете, что к чему. Просто внутри вас сработал один из древних механизмов. Из главы 1 мы уже знаем, что два верхних холмика четверохолмия среднего мозга напрямую связаны с нашими системами сигнализации и оповещения. Они непосредственно принимают информацию от наших сенсорных рецепторов, поэтому, если что-то вдруг случается, мы быстро реагируем на это. Внезапное изменение интенсивности света или тональности звука вызывает автоматическую реакцию, причем мгновенную, так что мы даже не успеваем ни о чем подумать. Мысль приходит позже.

Если вам когда-либо доводилось бодрствовать всю ночь, то вы, вероятно, помните, что ночью вы боролись со сном, но к тому времени, когда занялась заря и разгорелся день, вы уже чувствовали себя совершенно проснувшимся. Днем мы чувствуем себя более бодрыми, чем в ночные часы, и происходит это потому, что сетчатка и гипоталамус напрямую связаны между собой нейронами. Эта прямая связь является источником информации обо всем, происходящем и днем, и ночью, благодаря чему гипоталамус может регулировать наши биологические ритмы. Разумеется, искусственный свет изрядно их нарушает, но не отменяет: основные биологические ритмы все равно остаются при нас, и они-то как раз и реагируют на свет, причем даже у людей, лишенных зрения.

Обращали ли вы внимание на то, как привлекают к себе взгляд движущиеся предметы? Если вы смотрите на сцену и вдруг замечаете, что в ее уголке что-то движется, вы мгновенно переводите взгляд в ту сторону – и вам уже не до игры актеров. Это еще один очень эффективный механизм выживания, который помогает нам заметить потенциального хищника или другого человека. Наша зрительная система без промедления концентрируется на движении, поскольку в этот момент информация, передающаяся в основную зрительную кору, идет в обход обычных проводящих каналов и передается другим путем – напрямую от таламуса к зоне V5 зрительной коры. Зона V5 – это та часть зрительной области мозга, которая отвечает за регистрацию визуального движения, и наличие столь прямого пути передачи информации означает, что мы можем подмечать любые движения в пространстве вокруг себя, даже не отдавая себе полностью отчета в том, что видим.

В общем счете исследователи выявили порядка 10 различных механизмов или, лучше сказать, проводящих путей, по которым информация от сетчатки передается в различные части мозга. Эти открытия дали нам возможность объяснить один из самых непонятных аспектов человеческого зрения, называемый слепозрением. Слепозрение открыл в 1972 году британский врач и психолог Лоуренс Вайскранц, изучавший в те годы слепых людей, которые, однако, реагировали на те или иные зрительные раздражители. Эти люди могли, например, указать на движущийся объект или даже пригнуться, если некий предмет летел прямо на них, хотя они его не видели и никто им об этом не сообщал. Они его просто чувствовали, словно заранее угадывали или догадывались о его присутствии, причем даже в условиях тщательно проводимых лабораторных испытаний. У этих людей (и многих других, с которыми позже проводились исследования) была повреждена зрительная кора, в силу чего они не могли сознательно обрабатывать зрительную информацию. Они были слепыми, но другие, более древние аспекты их визуальной системы по-прежнему функционировали.

Имеются и другие, весьма странные формы слепоты. У людей возникает сугубо специфическая проблема со зрением, как правило из-за того, что их мозг поражает инфекция. Вероятно, самая распространенная форма частичной или выборочной слепоты – это категориальная слепота, при которой человек совершенно не способен различать предметы или явления особой категории. Чаще всего это относится к животным: такие люди могут распознавать все вокруг, кроме, например, собак, кошек или каких-то других животных. Когда люди их видят, они просто оказываются в тупике, ибо не в состоянии определить, кто же это. Категориальная слепота может проявляться различными путями: одни люди прекрасно различают движущиеся предметы и явления природного мира, но не в состоянии распознать искусственные, сконструированные объекты вроде инструментов или телефонов; другие могут распознавать животных и объекты, но совершенно не в состоянии понять, что за еда перед ними на тарелке. Они могут есть эту пищу и даже определять ее на вкус, но не могут распознать, что это за пища, когда смотрят на нее.

Категориальная слепота наступает из-за повреждения глубинных областей зрительной системы – тех областей мозга, где происходит распознавание воспринимаемых образов. Поэтому те категории предметов, которые ныне доступны или недоступны нашему зрительному восприятию, тесно связаны с нашей эволюционной историей. На ранних стадиях нашей эволюции умение отличать зверей и животных от предметов и прочих неодушевленных объектов являлось фундаментальным свойством в борьбе за выживание; то же относится и к умению распознавать пищу. Тот факт, что некоторые специфические категории каким-то образом выпадают из поля нашего зрения, объясняется тем обстоятельством, что все жизненно насущные категории настолько для нас важны, что они жестко «закреплены» в нашем мозге – настолько жестко, что мы в гораздо большей мере готовы к восприятию уже утвердившихся классов (животные, пища, объекты), чем к восприятию других, более современных (дома, транспорт, витрины, вывески). И когда одна из таких жестко «закрепленных» категорий вследствие повреждения мозга вдруг «выбраковывается», она полностью выпадает из нашего поля зрения.




Как мы видим


Та способность, которую мы в целом определяем как зрение (обычное зрение, как мы его понимаем и осознаем), используется для передачи зрительной информации главным маршрутом, на протяжении долгих лет подробно описанным в медицинской и узкоспециализированной литературе. Зрение начинается с особых светочувствительных клеток, расположенных в сетчатке глаза и называемых фоторецепторами. Они подразделяются на два вида: невероятно чувствительные палочковидные клетки, различающие яркость света, и клетки-колбочки, распознающие цвета и активно функционирующие только при ярком свете. Назначение обоих видов клеток – трансдукция, т. е. преобразование световой информации в понятные для мозга электрические импульсы. Этот процесс возможен благодаря тому, что свет, попадая в клетку, обесцвечивает там особые химические вещества, в результате чего клетка под их действием меняет свой электрический потенциал.






Рисунок 3.2. Структура сетчатки



Как только информация преобразуется в электрические импульсы, она передается на второй слой клеток сетчатки – в так называемые биполярные нейроны. Они осуществляют первичную обработку информации: реагируют или на светлые области на темном фоне, или на темные области на светлом фоне. Эта первичная и достаточно примитивная обработка позволяет выявить простейшие атрибуты или свойства окружающей среды, например водоем или море, так как они в целом отражают больше света, чем обрамляющая их суша. Поскольку самой яркой областью обычно является небо, во всяком случае в дневное время, эта их особенность позволяет различать яркие области на земле (или ближе к нижней части визуального поля, если вас больше интересует чисто техническая специфика процесса).

Для многих животных умение воспринимать любое движение – это вопрос жизни и смерти, поэтому обработка визуальной картины движения является базовой в зрительной системе. Третий слой сетчатки – это ганглиозные клетки, отслеживающие движение путем реакции на изменения и различия, происходящие в поле зрения. Каждая ганглиозная клетка имеет свое собственное рецептивное поле, сосредоточенное на одном участке сетчатки и простирающееся вовне. Одни клетки реагируют на свет, падающий на окружающую область, а не в середину, тогда как другие действуют совершенно противоположным образом, реагируя на свет, падающий в середину, а не на окружающую область. Они также реагируют на малейшие отклонения от этой закономерности, что делает их особенно чувствительными и восприимчивыми к движению.

На неподвижные объекты мы обращаем меньше внимания, чем на движущиеся. Кошке и собаке часто не удается отследить то, что не движется, поэтому им приходится прибегать к другим органам чувств. Сами мы воспринимаем неподвижные объекты только потому, что наш зрачок постоянно дрожит и подергивается; в медицине эти скачкообразные движения и подергивания называются саккадами. Причина их в том, что глазным нейронам приходится постоянно подстраиваться под несколько иной режим, чем если бы объекты двигались, хотя в действительности они неподвижны.

Зрительный нерв формируется из аксонов ганглиозных клеток: они достаточно длинные и в определенной точке пересекаются и соединяются. Но существует так называемое слепое пятно (мертвая зона), где зрительный нерв не соединен с сетчаткой, тем не менее вы об этом не знаете, так как ваш мозг дополняет недостающую информацию. Зрительный нерв передает информацию (для дальнейшей обработки) латеральному коленчатому телу. По пути она проходит через некую точку пересечения, называемую зрительной хиазмой, – Х-образную структуру, образованную двумя перекрещивающимися зрительными нервами. Информация от правосторонней части сетчатки каждого глаза передается правому полушарию мозга, а информация от левосторонней части сетчатки – левому полушарию. Итак, оба глаза доставляют сообщения и тому и другому полушарию мозга, но в левое полушарие поступает информация о правом зрительном поле, получаемая левосторонней частью сетчатки, тогда как правое получает информацию о левом зрительном поле, т. е. информацию, получаемую правосторонней частью сетчатки. Если это описание кажется вам путаным, обратитесь к рисунку 3.3.






Рисунок 3.3. Пути прохождения информации от глаза к мозгу



Когда зрительная информация достигает таламуса, она снова сортируется. Таламус состоит из шести слоев. Четыре верхних слоя реагируют на детали и цвет, а два нижних занимаются координацией информации о движении. Они реагируют только на движения и изменения, происходящие на больших пространствах зрительного поля. Таким образом, именно таламус сводит воедино и организует различные виды зрительной информации, прежде чем передать их для сознательной обработки в зрительную кору. Поэтому еще до того, как увиденное нами получает сознательную оценку, информация, воспринятая нашими глазами, подвергается основательной сортировке, причем сортировке крайне ценной с точки зрения эволюции. Действительно, умение отличать светлые зоны от темных и фиксировать движения и изменения помогает животным избегать препятствия или реагировать на них и окружающую среду, а также отыскивать потенциальные источники питания или отслеживать приближающихся хищников. Выше мы уже писали, что кое-какая часть этой информации передается непосредственно в более примитивные (а стало быть, и более древние) части мозга, вызывая мгновенную реакцию.

Но все эти процессы вполне рудиментарны. Более сложная обработка увиденного происходит в затылочной части большого мозга – в области, называемой зрительной корой. Главной зоной здесь является первичная зрительная кора, или V1; ее задача – осмысление всей полученной визуальной информации. Впервые эту зону головного мозга удалось выявить и четко обозначить лишь в начале ХХ века в ходе исследования раненых с повреждениями оболочки головного мозга, полученными в окопах Первой мировой войны. Исследования показали, что повреждение этой части коры неизбежно ведет к частичной или полной потере зрения, и чем серьезнее повреждение, тем полнее слепота. Другими словами, в зависимости от степени повреждения зрительной коры одни солдаты утратили способность видеть частично (они что-то воспринимали, а что-то не воспринимали совсем), тогда как другие полностью ослепли.

На более раннем этапе исследований канадскому нейрохирургу Уайлдеру Пенфилду удалось стимулировать эту область у пациентов, которым он делал операцию на мозге. Во время таких операций люди обычно сохраняют сознание, поскольку мозг лишен болевых рецепторов, так что Пенфилд в ходе операции мог задавать им вопросы, узнавая, что именно они чувствуют и какие образы им являются. Картины, являвшиеся внутреннему взору таких пациентов, весьма разнообразны: это мог быть и летящий в небе воздушный шар, и сельские пейзажи, и что-то другое. Тем самым он доказал, что зрительная кора – это не просто масса мозгового вещества, что различные ее части отвечают за разные функции. Однако для того, чтобы ответить на вопрос, как именно она устроена и как работает, потребовалось великое множество дополнительных исследований, которые продолжаются и по сей день.

Зрительная кора связана с другими областями мозга, и для связи с ними она пользуется двумя основными проводящими путями. Первый – вентральный зрительный тракт – используется главным образом для идентификации объектов и явлений независимо от того, где они находятся, поэтому его часто называют «что» – трактом; он простирается от зрительной коры до височной доли большого мозга. Второй – это дорсальный зрительный тракт, используемый для локализации объектов и явлений независимо от того, что они собой представляют, поэтому его часто называют «где» – трактом; он простирается от зрительной коры до теменных долей. Вместе эти два зрительных тракта дают нам возможность осознавать мир, осмысливать его и эффективно действовать в нем. Давайте теперь рассмотрим, как работают клетки нашего мозга, давая нам полноценную зрительную картину того мира, в котором мы живем.






Рисунок 3.4. Дорсальный и вентральный зрительные тракты




Как мы распознаем предметы



Выше мы рассказали о том, как наши зрительные клетки реагируют на свет и тьму, что, несомненно, является одним из основных механизмов выживания. Но наше зрение намного сложнее. Мы видим объекты, фон, окружение, людей, цвета, и все эти образы тем или иным способом обрабатываются нашим мозгом. Как это происходит?

Одно из важнейших открытий в этой области сделали нейрофизиологи Хьюбел и Визель, кропотливо изучавшие работу зрения, фиксируя действия отдельных нейронов. В 1969 году они опубликовали работу, показав, как некоторые нервные клетки первичной зрительной коры (зона V1) реагируют на линии, расположенные под специфическим углом и находящиеся только в одной части зрительного поля. Эти клетки они назвали простыми. Дальнейшие исследования показали, что простые клетки реагируют на одни и те же сигналы, воспринимаемые либо левым, либо правым глазом, и что некоторые из них реагируют также на специфические волны света, или, другими словами, на специфические цвета. Эти клетки эффективно анализируют поступающую в зрительную кору информацию и обрабатывают ее основные свойства. Затем они передают ее другим клеткам, которые Хьюбел и Визель назвали сложными. Эти клетки объединяют информацию, полученную от нескольких простых клеток, в результате чего они обретают свойство реагировать на линию, расположенную под специфическим углом в любой части зрительного поля, или на линию специфического цвета, находящуюся где бы то ни было в пределах зрительного поля. Эту информацию сложные клетки затем передают гиперсложным клеткам, реагирующим на специфические формы или очертания (рисунок 3.5).






Рисунок 3.5. Простые, сложные и гиперсложные клетки



Это означает, что наша зрительная система способна различать простые формы, очертания, а также края и границы между светлой и темной зонами. Согласно Д. Марру (1982), это все, что нам нужно, чтобы воспринимать окружающие объекты. Если мы соединим эту информацию с той, которая поступает от оптической матрицы (так Марр называет общую картину света, достигающего сетчатки), мы сможем определить контуры, т. е. края, и выявить сходные области. Объединив все это, мы получим основные структуры наблюдаемой сцены – то, что Марр назвал необработанным первоначальным эскизом. И хотя этот эскиз достаточно зыбкий и размытый, он все же дает достаточно информации, чтобы мы смогли уяснить, что за объект находится перед нами, как на пиксельном рисунке 3.6.






Рисунок 3.6. Первоначальный эскиз



Но в нашем распоряжении имеется гораздо больше информации, чем та, которая содержится в оптической матрице. Наш мозг является хранилищем опыта, и этот опыт тоже помогает нам осмысливать различаемые объекты. Нам известно, например, что объекты, находящиеся далеко от нас, выглядят меньше, чем они есть на самом деле, и что близко расположенный объект может закрывать часть того, что находится на расстоянии. Мы можем также взять на вооружение законы восприятия, открытые гештальтпсихологами в первой половине ХХ века и свидетельствующие о том, что мы пусть и бессознательно, но совершенно осмысленно и конструктивно группируем биты получаемой информации (если вы хотите узнать об этом более подробно, советую прочесть мою книгу «Доступная психология»). По мере того как мы осваиваемся в окружающей среде и лучше ее узнаем, мы усваиваем и другие законы восприятия, что, согласно Марру, дает нам возможность определить объем, или массивность, объектов, которые находятся в поле нашего зрения. Правда, эта картина слишком обща и лишена подробностей: Марр описывает ее просто как комбинацию конусов и трубок, которую он назвал 2,5-мерным эскизом, поскольку она близка к трехмерному эскизу, но чуть-чуть до него не дотягивает. В результате получается контурограмма, которой вполне достаточно, чтобы мы сумели определить предмет, находящийся в поле нашего зрения.

Некоторые знатоки утверждают, что творения таких художников, как, например, Лоуренс Стивен Лаури, оттого так сильно затрагивают струны нашей души, что они воздействуют на наши первобытные зрительные механизмы: контурные фигуры на его полотнах подобны 2,5-мерному эскизу на этапе первичной дешифровки визуальной информации, поэтому они распознаются нами мгновенно. Например, мы легко устанавливаем различия между коровой, собакой или другим человеком (рисунок 3.7) и можем даже высказать предположение об отношениях, связывающих рассматриваемых людей, исходя из их позы и того положения, которое они занимают по отношению друг к другу.






Рисунок 3.7. Контурограммы коровы, собаки и человека



Мы можем легко составить представление о том, что именно находится перед нами, и отличить животное от дерева, например. А вот отличить собаку от кошки уже гораздо труднее, ибо это требует от нас более сложного знания о мире, цвете, тенях, контурах объекта и, что самое важное, умения обращаться к воспоминаниям. Благодаря всем этим атрибутам мы развиваем в себе способность распознавать и идентифицировать то, что находится в поле нашего зрения. Но все начинается со света и тени, которые идентифицируются биполярными нейронами, а затем подвергаются дальнейшему «осмыслению» простыми и сложными клетками зрительной коры.




Определение расстояний


Видеть предметы, объекты и явления – это во всех отношениях прекрасное качество, но для того, чтобы суметь выжить в этом мире, нам необходимо также знать, где именно находятся все эти предметы, объекты и явления и как близко к нам они расположены. Американский психолог Джеймс Джером Гибсон, считающийся одним из известнейших психологов в области зрительного восприятия, объяснил, как именно устроено и организовано наше восприятие. Это объяснение ныне служит нам солидным подспорьем, помогающим познавать этот мир, передвигаться в нем и эффективно взаимодействовать с окружающими предметами. Например, тот факт, что у нас на лицевой стороне головы есть два глаза, означает, что каждый из них видит почти одно и то же, но с небольшой разницей. Это дает нам возможность сравнивать образы, увиденные каждым глазом, и посредством различия между ними определять, насколько далеко или близко находится от нас тот или иной предмет. Это возможно благодаря наличию в нашем мозге зрительной хиазмы, которая увязывает между собой сходную информацию, воспринятую двумя глазами. Когда информация от каждого глаза достигает наконец зрительной коры, она выстраивается рядами, колонками или, если хотите, столбцами, т. е. организуется так, что наш мозг без особых проблем может сравнивать эти два образа.

Почему мозг занимается этим? Зачем ему это нужно? А затем, что небольшие различия между одним и тем же образом, воспринятым обоими глазами, говорят нам о том, как далеко (или близко) от нас находится данный объект, а знать это невероятно важно, особенно если вы, например, прыгаете с ветки одного дерева на ветку другого. У древесных животных, т. е. животных, постоянно или бо?льшую часть жизни обитающих на деревьях, глаза расположены на лицевой части головы, поскольку иное расположение глаз может привести к неверной оценке расстояния, а это чревато катастрофой. У нас как высших приматов глаза тоже расположены подобным образом – как часть нашего собственного эволюционного наследия. Различия между двумя образами (точнее, одним и тем же образом, но воспринятым двумя глазами) увидеть довольно легко, если взять в руку карандаш и поднести его к глазам на расстоянии вытянутой руки. Закройте один глаз и выровняйте карандаш с какой-нибудь линией или вехой на заднем фоне. Затем закройте этот глаз и откройте другой – карандаш будет выровнен иначе. Поднесите карандаш чуть ближе к лицу и повторите упражнение – разница окажется еще больше. Вот как мозг использует оба глаза для определения расстояний. На научном языке это называется бинокулярной диспаратностью. Но одной диспаратностью умение определять расстояние не ограничивается.

Когда мы совершаем передвижения, перемещаясь, например, с одного места на другое, зрительный образ, воспринимаемый глазами, в это время как бы течет и изменяется. Это тоже очень важный фактор для определения того, как далеко от нас находятся те или иные реалии и где находимся мы сами по отношению к ним. Это явление получило название «оптический поток», и мы пользуемся им более или менее бессознательно. В следующий раз, когда будете ехать на поезде или в машине в качестве пассажира, обратите внимание на то, как меняются окружающие вас предметы, если внимательно наблюдать за ними. Те, что находятся далеко, будто движутся вместе с вами в том же самом направлении; а те, что близко, проносятся мимо в противоположную сторону. По мере движения ваш оптический поток неустанно течет и меняется.

Оптический поток как свойство зрительного пространства в равной мере характерен для каждого глаза, и то же самое можно сказать о других дистанционных критериях объекта, находящегося в поле нашего зрения, таких как его величина, высота и габариты. Именно этими критериями пользуется художник, когда пишет реалистическое полотно, хотя они порой могут создавать весьма интересные зрительные иллюзии (если эта тема вам интересна, более подробную информацию о ней вы можете найти в моей книге «Доступная психология»). Однако в реальной жизни наш мозг использует движение и оптический поток для того, чтобы понять и осмыслить все, что нас окружает, так что иллюзии встречаются не так уж и часто. В силу этого даже люди, видящие только одним глазом, тоже спокойно могут определять расстояния, хотя иногда их определение страдает небольшими погрешностями.




Восприятие цвета


Для многих животных очень важно (именно в целях выживания) уметь различать цвет. По цвету плода, например, можно определить, созрел ли он и готов ли к употреблению или лучше его пока не трогать. Цвет объектов, расположенных рядом или неподалеку, кажется более живым и ярким, чем цвет объектов, находящихся далеко от нас – он, как и сами объекты, кажется более серым и размытым. Другие же животные – например, те, кто добывает пищу охотой и не питается плодами деревьев, – не так зависимы от умения различать цвета и потому полагаются на него в меньшей степени: для них куда важнее умение выявлять даже малейшее движение. Особенно чувствительны к таким изменениям палочковидные клетки, вот почему у многих животных, таких как собаки и кошки, цветное зрение вообще отсутствует.

У людей на внутренней стороне большого мозга, вне основной зрительной области, имеется особая зона, непосредственно заведующая распознаванием цветов. Это так называемая зона V4. Если она повреждена, человеку окружающий мир представляется сотканным из серых теней. Это нарушение – ахроматопсия – встречается крайне редко, так как свои зоны V4 имеются в обоих полушариях головного мозга, и для того чтобы мир предстал в сером цвете, необходимо, чтобы обе зоны были повреждены. Люди, у которых повреждена только одна зона, воспринимают цвета менее живыми и яркими и часто описывают их как грязные или размытые. Эта зона отвечает за такое качество восприятия, как константность цветовосприятия, под которой понимается безусловное распознавание объектов одного и того же цвета даже при различном освещении. То, что мы различаем как цвет, есть некое качество, вычленяемое из световых волн, воспринимаемых нашими глазами. Однако при различном освещении световая волна имеет свойство меняться, и та вещь, которую мы видим вечером при свете лампы, в ярком свете солнца может отражать совсем другую длину волны, а потому и выглядеть иначе – с точки зрения цвета. Благодаря зоне V4 мозг мгновенно адаптируется к такому несоответствию, вследствие чего цвет воспринимается нами как неизменный. Константность цветовосприятия – идеальное свойство: оно действует столь безошибочно, что мы в повседневной жизни даже не обращаем на него внимания. Однако приведенный ниже случай из практики доказывает, сколь ощутимым для повседневной жизни может оказаться это свойство, когда оно вдруг подводит.


Случай из практики: какого цвета платье



В феврале 2015 года среди пользователей Интернета разгорелась нешуточная дискуссия относительно цвета одного платья. На самом деле полосы на платье были синего и черного цвета, но сфотографировано оно было при недостаточно ярком освещении, что вызвало очень интересный эффект. Одни утверждали, что видят на платье полосы синего и черного цвета, в то время как другие уверяли, что у платья совсем другие цвета – белый и золотистый, а других красок они не видят.

Чем же объясняется столь разное восприятие? Дело в том, что у тех, кто видел синий и черный цвета, с константностью цветовосприятия все было в полном порядке: оно действовало с учетом разницы в яркости освещения, а потому и цвета определяло верно. А те, кто видел белый и золотистый цвета, реагировали непосредственно на воспринимаемые ими световые волны, поэтому истолковывали их так, как если бы речь шла о восприятии цвета при нормальном дневном освещении. Виновницей столь искаженного восприятия оказалась зона V4 в их мозге: именно она совершенно неосознанно с их стороны так различала цвета платья. Даже когда данный феномен был объяснен, эти люди (и я, увы, в их числе) продолжали различать все те же белый и золотистый цвета, и им было очень трудно поверить, что настоящими являются синий и черный.





Распознавание движения


Кино и телевидение стали неотъемлемой частью современной жизни. Но это стало возможным только благодаря тому, что наша зрительная кора реагирует на движение. Главный центр головного мозга, отвечающий за движение, – это часть зрительной коры под названием зона V5. Расположенная близко к его внешней поверхности, она координирует наше восприятие и, объединяя различные впечатления, создает картину плавного движения. По тому же принципу работает и кино: если бы нам показали ряд огней, вспыхивающих то последовательно, то хаотично, мы бы восприняли их как одну светящуюся точку, движущуюся вдоль линии. Свойственная нам от природы тенденция объединять и увязывать различные образы в единое восприятие непрерывного движения является первоосновой всей киноиндустрии, и за прошедшее столетие она принесла баснословную прибыль предпринимателям, работающим в этой сфере. Она является неотъемлемой частью более древнего механизма выживания, благодаря которому животные по кратким фрагментам мельтешения за кустами или под другим прикрытием предугадывают движение хищника или жертвы, и процесс этот настолько автоматизирован, что мы выполняем его, совершенно над ним не задумываясь.

Вы можете видеть перед собой целую череду огней, которые, когда они неподвижны, выглядят разрозненными и никак не связанными между собой светящимися точками. Но когда они оживают, вы немедленно убеждаетесь, что они неотделимы от человека или группы людей. Наш мозг очень восприимчив к перемещениям других людей и животных – это часть нашего эволюционного наследия, – поэтому мы всегда готовы распознать биологическое движение и отреагировать на него. Под биологическим понимается такое движение, которое создается в процессе перемещения физических тел. В одном из классических экспериментов на человека надевают специальный черный костюм, к складкам и швам которого прикреплены маленькие зажженные лампочки. Если лампочки совершенно неподвижны, то на фоне черного пиджака они выглядят как отдельные светящиеся точки; но как только они приходят в движение, будь то ходьба, бег или какое-то другое перемещение, мы сразу же распознаем в них движущегося человека.

Это происходит потому, что зона V5 связана с другой зоной мозга – височными долями, которые отвечают за распознавание находящихся в движении тел и лиц. Эта зона известна как височная верхняя борозда; она активируется и реагирует, как только мы видим движущееся тело. Височная верхняя борозда соединяет зрительную и слуховую информацию и напрямую связана с нашими двигательной и сенсорной системами. В ней тоже имеется система зеркальных нейронов, которая помогает согласовывать наши действия с действиями других людей или симпатизировать им (мы вернемся к этой зоне и более подробно расскажем о ней в главе 7, когда будем рассматривать движение).


Случай из практики: повреждение зоны V5



Поскольку у мозга две стороны, то повреждение одной из них часто никак не отражается на нашей обычной деятельности, и наш организм продолжает функционировать как ни в чем не бывало. Но у одной женщины оказались повреждены обе стороны мозга, причем именно в зоне V5, и в результате она полностью утратила способность к распознаванию движения: вместо него она видела ряд статичных, неподвижных образов. Если она переходила дорогу, то в первый момент она видела машину вдалеке, а в следующий эта же машина была очень близко. Когда же женщина пыталась налить в чашку воды, то вообще не видела, как та наполняется: сначала она видела чашку пустой, а потом – переполненной, когда вода уже переливалась через край. Интересно, однако, что в ряде движущихся огней она без труда могла вычленять биологическое движение (во всяком случае, могла сказать, что это именно тело, а не случайная группа огней), но при этом не могла определить направление этого движения.





Как мы различаем людей



Люди, как известно, – существа весьма и весьма коммуникабельные, и наш мозг является проводником этой нашей особенности. Поэтому вряд ли стоит удивляться тому, что, когда мы видим других людей, некоторые части нашего мозга особым образом реагируют на это. Когда мы видим фигуры людей или части их тела, будь то реальные фигуры и части или линейные рисунки и контурограммы, о которых шла речь выше, одна часть мозга тут же активируется – это так называемая экстрастриарная зона (от лат. extra – «сверх», «вне»). Название говорит само за себя: эта зона находится вне основной зрительной коры, которую иногда называют стриарной корой (от лат. striae – «полосы»), так как она содержит полоску из более темных клеток. Экстрастриарная зона отвечает главным образом за идентификацию тел и их контуров, доставляя эту информацию к другим частям мозга, отвечающим за эмпатию или эмоции.

Экстрастриарная зона не занимается выявлением тонкостей или выяснением того, что в данное время происходит с телом; ее интересуют только контуры или изображения тела. Временное прерывание функции экстрастриарной зоны, достигаемое с помощью магнитной стимуляции, показывает, что она активируется только тогда, когда мы или идентифицируем части тела, или устанавливаем различие между ними, но не когда они выполняют какие-то действия. В одном из исследований участникам показали изображение обычной руки и изображение руки, проткнутой иголкой, но реакция их мозга на оба изображения была абсолютно идентичной. Однако они по-разному среагировали на различия формы и контуров тела в зависимости от того, было ли это тело худым или толстым. Это заставляет предположить, что у некоторых из них (все эти люди страдали анорексией) имеются повреждения в экстрастриарной зоне, а это приводит к тому, что они всегда неверно оценивают габариты своего тела, считая, что оно толще, чем есть на самом деле.

Различать части тела – это одно, но что происходит, когда мы видим знакомого человека? Здесь уже активируется другая часть мозга, участвующая в распознавании тел, – та, которая непосредственно связана с нашей социальной памятью и воспоминаниями о людях в целом. Эта часть большого мозга находится прямо под затылочной долей, где она соединяется с височной долей. В отличие от экстрастриарной, эта зона не реагирует на линейные фигуры или контурограммы тела, но фокусируется на всем теле, а потому по-разному реагирует на тех, кто нам знаком, и тех, кого мы не знаем. Данная зона называется веретенообразной телесной областью, поскольку она отвечает за распознавание тел и размещается вдоль веретенообразной лицевой области, отвечающей за распознавание лиц. И это не случайно: когда мы распознаем людей, обе эти области действуют сообща.




Распознавание лиц


Умение распознавать других индивидуумов и различать людей между собой – насущно важное качество для такого социального существа, как человек. Но распознавание лиц – сложная задача, которая состоит из трех основных элементов:

1) распознавания отдельного светотеневого образа как человеческого лица;

2) идентификации самого лица как атрибута, принадлежащего отдельному индивидууму;

3) интерпретации выражения, взгляда и прочих коммуникативных знаков, характерных для лицевой мимики.



Первый элемент – распознавание лица – относится к той части зрительной коры, которая называется затылочной долей мозга. Она размещается под экстрастриарной зоной и выполняет ту же функцию, но только различает не тела, а лица. Нейроны затылочной зоны возбуждаются в тот момент, когда мы смотрим на лица или на изображения лиц, а не тогда, когда мы смотрим на тела или другие объекты. Другими словами, они фокусируются исключительно на физических аспектах лицевых примет и потому равным образом реагируют как на перевернутые лица, так и на лица, представленные в должном ракурсе. Это первая стадия анализа лиц, получения информации от первичной зрительной коры и пересылки ее в две другие зоны.

Вторая зона – веретенообразная лицевая область – размещается под большим мозгом, рядом с веретенообразной телесной областью (рисунок 3.8). Клетки в этой зоне реагируют на лица в большей мере, чем на другие раздражители, и активнее всего они реагируют именно на знакомые лица. Более того, они будут точно так же реагировать на то же самое лицо даже в том случае, если это лицо будет сориентировано совсем по-другому или будет нести на себе отпечаток иных выражений. Веретенообразная лицевая зона напрямую связана с височной долей большого мозга, а именно там хранится биографическая и персональная информация, так же как и имена.

Поскольку веретенообразных лицевых зон две – по одной в каждом полушарии, – то крайне редко встречаются случаи, когда человек полностью теряет способность различать лица. Однако частичная потеря такой способности встречается не так уж и редко. Люди, страдающие болезнью Альцгеймера, зачастую не узнают членов своей семьи, что вызывает у последних вполне объяснимые переживания. Причем в ряде случаев подобное происходит именно из-за повреждения нервных клеток в веретенообразной лицевой зоне. Но прозопагнозия, т. е. неспособность распознавать лица, может встречаться и у людей, казалось бы, совершенно нормальных и не страдающих деменцией.






Рисунок. 3.8. Веретенообразная и лицевая области



Третья зона мозга, связанная с распознаванием лиц, – верхняя височная борозда – отвечает, кроме того, о чем говорилось выше, за восприятие движения. Эта зона реагирует на лицевые изменения: изменение выражения, взгляда, движения губ и т. д., – что очень важно в контексте социального общения с присущей ему эмоциональностью. Информацию эта зона получает от лимбической системы, миндалевидного тела и прочих участков мозга, отвечающих за эмоции (более подробно мы рассмотрим их в главе 8). Все эти связи следует расценивать в свете того, что именно эта, а не какая-то другая зона мозга увязывает выражения лиц людей с испытываемыми эмоциями и делает их доступными нашему пониманию.

Верхнюю височную борозду мы используем также для чтения по губам: она объединяет информацию, получаемую из зрительной и слуховой коры, связывая зрительные послания со звуками речи, еще не облеченными в слова, т. е. реагирует наиболее эффективно именно тогда, когда слуховая информация соотносится с движением губ. А это немалое подспорье во время бесед, диалогов и разговоров в ходе ежедневного общения. Умение читать по губам чаще всего помогает людям, утратившим слух, однако все мы тоже в известной степени им пользуемся. Именно эта часть мозга, когда она функционирует должным образом, сообщает нам, что с фильмом или видеофильмом что-то не так, например что звук и изображение не синхронизированы. Она же играет определенную роль и в отслеживании последовательности действий, но там ее роль менее очевидна. Зато когда речь идет о лицах и произносимых словах, ее функция очень даже ясна.

Тот факт, что веретенообразная лицевая область и верхняя височная борозда заведуют лицевой информацией, причем в различных аспектах, подтверждают результаты исследований, проведенных учеными в 2000 году (см. Э. Хоффман и Дж. Хэксби, 2000) с использованием фМРТ. Участникам эксперимента было предложено высказать свое мнение о картинах. Когда они высказывались об особенностях того или иного лица, исследователи зарегистрировали повышенную активность в веретенообразной лицевой области, при этом верхняя височная борозда никак не реагировала. Когда же их попросили высказаться о выражении глаз, то веретенообразная область никак не отреагировала, зато активировалась верхняя височная борозда.

Таким образом, наша зрительная система – система комплексно-социальная. Часть ее действует бессознательно; другие же части слишком сложны, чтобы составить о них вполне четкое представление. Однако работа продолжается, и исследователи постоянно пополняют свои знания, обнаруживая что-то новое; впрочем, это же можно сказать и обо всех зонах и областях головного мозга. Как бы там ни было, мы унаследовали весьма замысловатую систему, эволюционировавшую на протяжении длительного времени – начиная от простейших функций вроде умения отличать наличие света от его отсутствия и заканчивая умением четко распознавать отдельных людей.


Фокусные точки



1. Существуют виды бессознательного зрения, которое осуществляется механизмами, созданными в ходе эволюции нашего зрительного восприятия. Слепозрение – один из них.

2. При нормальном сознательном зрении информация передается от глаз к таламусу, а затем к зрительной коре. Зрительная хиазма доставляет сообщения от обоих глаз к одной и той же части мозга.

3. В визуальной коре зрительная информация сортируется с целью идентификации основных объектов и объединяется с жизненным опытом, давая нам сведения о цвете и расстоянии.

4. Умение улавливать движение – очень важное свойство в борьбе за выживание, и наш мозг автоматически увязывает отдельные биты информации, создавая из них безостановочное движение.

5. Наша социальная природа отражается на уровне мозга: в его строении выделены специфические зоны, отвечающие за распознавание тел и лиц других людей.



Следующий этап



Из следующей главы мы узнаем, как мозг распознает звуки, которые мы слышим, и осмысливает их.





Глава 4. Как мы распознаем то, что слышим



Из этой главы вы узнаете:

? все о процессах, связанных со слухом;

? как мы слышим звуки;

? как мы среди прочих звуков распознаем речь;

? как мозг обрабатывает музыку и ритмы.



«Если в лесу падает дерево и никто этого не слышит, можно ли говорить о том, что падение дерева действительно вызывает некий звук?» – гласит классическая загадка, по поводу которой философы спорят уже многие столетия. Но для психологов это давно уже не загадка. Падающее дерево, утверждают они, производит не звук, а колебания волн, которые распространяются в воздухе, а наш мозг распознает эти колебания и преобразует их в звуки. Звуки – это то, что мы слышим. Если рядом нет ни души и никто эти звуки не слышит, то нет и самих звуков – исключая, пожалуй, только лесных животных, которые могут в этот момент оказаться поблизости и услышать, как падает дерево.

Слух – второй по важности орган чувств. Если мы не слышим или если наш слух по какой-либо причине сильно ослаблен, это нас огорчает, ведь, лишаясь слуха, мы в то же время лишаемся возможности общаться с другими людьми. Создается ощущение (если не полное, то частичное) отстраненности от жизни с ее процессами. Вот почему слуховой аппарат, язык жестов и другие средства общения, к которым прибегают глухие или люди с ослабленным слухом, столь важны во всех отношениях. Слух – неотъемлемая часть системы общения с другими людьми: он помогает нам постоянно быть в курсе того, что происходит вокруг.

Звуки – это впечатления, это конечный результат восприятия тех вибраций, которые пронизывают воздух (или воду, если мы вдруг оказываемся под водой). Мы, люди, умеем распознавать очень широкий диапазон звуков – от очень высоких, обладающих высокочастотными вибрациями, до очень низких, наделенных низкочастотными вибрациями. Однако многие животные, как и в случае со светом, могут распознавать звуковые сигналы, намного превышающие диапазон человеческого слуха. Летучие мыши, например, издают и воспринимают на слух гораздо более высокие звуковые вибрации, нежели это свойственно людям, поэтому летучая мышь в полете нам кажется совершенно беззвучной, хотя в действительности она издает высокочастотный писк и слышит, как он отдается эхом. На другом конце спектра – киты: они издают звуки настолько низкие, что те вообще не воспринимаются человеческим ухом, но при этом распространяются под водой на огромные расстояния и улавливаются другими китами, находящимися за сотни миль. На суше подобным образом общаются слоны: они издают инфразвуки настолько низкие, что человеческое ухо не в силах различить их, зато другие слоны спокойно улавливают их на больших расстояниях.

Умение распознавать и осмысливать перемены в давлении воздуха сводится не только к идентификации частот. С помощью этого умения мы можем также различать громкость звука, которая передается амплитудой колебаний продольных волн, достигающих нашего уха. Громкие звуки порождают волны с высокой амплитудой колебаний, а тихие – с низкой амплитудой (рисунок 4.1). Звуки – тоже довольно сложная система, сложная в том смысле, что большинство из тех звуков, которые мы слышим, состоят из нескольких элементов, причем нередко каждый со своей частотой, так что звуки часто несут в себе не одну частоту, а несколько. Чистые, т. е. одночастотные, звуки крайне редки, их нечасто встретишь в повседневной жизни, да и в природе тоже.




Конец ознакомительного фрагмента.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=68523957) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.


Запутанный мозг. Путеводитель по нейропсихологии Ники Хейз
Запутанный мозг. Путеводитель по нейропсихологии

Ники Хейз

Тип: электронная книга

Жанр: Нейропсихология

Язык: на русском языке

Издательство: АСТ

Дата публикации: 01.07.2024

Отзывы: Пока нет Добавить отзыв

О книге: Мозг дает нам возможность видеть, слышать и ощущать окружающий мир; он придает смысл всем нашим действиям и позволяет совершать эти самые действия: целенаправленно двигаться, делать то, что мы желаем или считаем нужным. Но его способности куда обширнее: мозг может разными способами запоминать и хранить информацию, связанную с нашими умениями, знаниями и навыками так, что мы действуем абсолютно автоматически; он же позволяет нам устанавливать взаимоотношения с окружающими и даже привязываться к ним. Кроме того, благодаря особенному развитию и устройству мозга мы обладаем эмоциями: испытываем гнев, страх, счастье и отвращение, откликаемся на похвалу и ласку; мы бываем взволнованными и бдительными или спокойными и расслабленными, а можем просто спать. Все эти состояния сознания – часть работы нашего мозга.

  • Добавить отзыв